如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标 轴分别交于A、B、C、D四点.抛
如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N...
如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标 轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,在抛物线上找一点Q,使△BDQ的面积与△BDP的面积相等,求点Q的坐标.
展开
1个回答
展开全部
解答:解:(1)∵圆心O在坐标原点,圆O的半径为1,
∴A(-1,0)、B(0,-1)、C(1,0)、D(0,1),
∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C,
∴M(-1,-1)、N(1,1),
∵点D、M、N在抛物线上,
∴将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c,
得:
,
解得:
,
∴抛物线的解析式为y=-x2+x+1;
(2)∵y=-x2+x+1=-(x-
)2+
,
∴抛物线的对称轴为直线x=
,
∴OE=
,DE=
=
,
连接BF,则∠BFD=90°,
∴△BFD∽△EOD,
∴
=
,
又∵DE=
,OD=1,DB=2,
∴FD=
∴EF=FD-DE=
-
=
;
(3)根据题意得到点P在抛物线上,理由为:
设过D、C点的直线为y=kx+b,
将点C(1,0)、D(0,1)的坐标代入y=kx+b,得k=-1,b=1,
∴直线DC为y=-x+1,
过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1,
将y=-1代入y=-x+1,得x=2,
∴P点的坐标为(2,-1),
当x=2时,y=-x2+x+1=-22+2+1=-1,
则P点在抛物线y=-x2+x+1上;
可得S△BDP=
BP?BD=
×2×2=2,
由S△BDP=S△BDQ,设Q横坐标为x,
∴S△BDQ=
BD?|xQ|=2,即|xQ|=2,
∴xQ=2或-2,
当Q横坐标为2时,与P重合,舍去;当Q横坐标为-2时,代入抛物线解析式得:y=-x2+x+1=-4-2+1=-5,
则Q坐标为(-2,-5).
∴A(-1,0)、B(0,-1)、C(1,0)、D(0,1),
∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C,
∴M(-1,-1)、N(1,1),
∵点D、M、N在抛物线上,
∴将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c,
得:
|
解得:
|
∴抛物线的解析式为y=-x2+x+1;
(2)∵y=-x2+x+1=-(x-
1 |
2 |
5 |
4 |
∴抛物线的对称轴为直线x=
1 |
2 |
∴OE=
1 |
2 |
|
| ||
2 |
连接BF,则∠BFD=90°,
∴△BFD∽△EOD,
∴
DE |
DB |
OD |
FD |
又∵DE=
| ||
2 |
∴FD=
4
| ||
5 |
∴EF=FD-DE=
4
| ||
5 |
| ||
2 |
3
| ||
10 |
(3)根据题意得到点P在抛物线上,理由为:
设过D、C点的直线为y=kx+b,
将点C(1,0)、D(0,1)的坐标代入y=kx+b,得k=-1,b=1,
∴直线DC为y=-x+1,
过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1,
将y=-1代入y=-x+1,得x=2,
∴P点的坐标为(2,-1),
当x=2时,y=-x2+x+1=-22+2+1=-1,
则P点在抛物线y=-x2+x+1上;
可得S△BDP=
1 |
2 |
1 |
2 |
由S△BDP=S△BDQ,设Q横坐标为x,
∴S△BDQ=
1 |
2 |
∴xQ=2或-2,
当Q横坐标为2时,与P重合,舍去;当Q横坐标为-2时,代入抛物线解析式得:y=-x2+x+1=-4-2+1=-5,
则Q坐标为(-2,-5).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询