如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标 轴分别交于A、B、C、D四点.抛

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N... 如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标 轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,在抛物线上找一点Q,使△BDQ的面积与△BDP的面积相等,求点Q的坐标. 展开
 我来答
yzCJ02LK
推荐于2016-12-01 · TA获得超过1945个赞
知道答主
回答量:123
采纳率:100%
帮助的人:128万
展开全部
解答:解:(1)∵圆心O在坐标原点,圆O的半径为1,
∴A(-1,0)、B(0,-1)、C(1,0)、D(0,1),
∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C,
∴M(-1,-1)、N(1,1),
∵点D、M、N在抛物线上,
∴将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c,
得:
c=1
?1=a?b+c
1=a+b+c

解得:
a=?1
b=1
c=1

∴抛物线的解析式为y=-x2+x+1;

(2)∵y=-x2+x+1=-(x-
1
2
2+
5
4

∴抛物线的对称轴为直线x=
1
2

∴OE=
1
2
,DE=
1
4
+1
=
5
2

连接BF,则∠BFD=90°,
∴△BFD∽△EOD,
DE
DB
=
OD
FD

又∵DE=
5
2
,OD=1,DB=2,
∴FD=
4
5
5

∴EF=FD-DE=
4
5
5
-
5
2
=
3
5
10


(3)根据题意得到点P在抛物线上,理由为:
设过D、C点的直线为y=kx+b,
将点C(1,0)、D(0,1)的坐标代入y=kx+b,得k=-1,b=1,
∴直线DC为y=-x+1,
过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1,
将y=-1代入y=-x+1,得x=2,
∴P点的坐标为(2,-1),
当x=2时,y=-x2+x+1=-22+2+1=-1,
则P点在抛物线y=-x2+x+1上;
可得S△BDP=
1
2
BP?BD=
1
2
×2×2=2,
由S△BDP=S△BDQ,设Q横坐标为x,
∴S△BDQ=
1
2
BD?|xQ|=2,即|xQ|=2,
∴xQ=2或-2,
当Q横坐标为2时,与P重合,舍去;当Q横坐标为-2时,代入抛物线解析式得:y=-x2+x+1=-4-2+1=-5,
则Q坐标为(-2,-5).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式