如图,E为矩形ABCD的边CD上的一点(CE>DE),AE⊥BE.以AE为直径作⊙O,交AB于F.点G为BE的中点,连接FG

如图,E为矩形ABCD的边CD上的一点(CE>DE),AE⊥BE.以AE为直径作⊙O,交AB于F.点G为BE的中点,连接FG.(1)求证:FG为⊙O的切线;(2)若CD=... 如图,E为矩形ABCD的边CD上的一点(CE>DE),AE⊥BE.以AE为直径作⊙O,交AB于F.点G为BE的中点,连接FG.(1)求证:FG为⊙O的切线;(2)若CD=25,AD=12,求FG的长. 展开
 我来答
手机用户55633
2014-11-05 · TA获得超过1941个赞
知道答主
回答量:129
采纳率:0%
帮助的人:65.2万
展开全部
解答:解:(1)连接OF、EF、OG;
∵AE是⊙O的直径,AF⊥EF,
∴∠AFE=90°=∠EFB=∠AEB,
又∵G是BE的中点,
∴EG=
1
2
BE=FG;
∵OE=OF,OG=OG,
∴△OEG≌△OFG(SSS),
∴∠OFG=∠OEG=90°,
∴OF⊥FG,
∴FG为⊙O的切线.

(2)设DE=x,则EC=25-x;
∵四边形ABCD是矩形,AD=12,
∴∠D=∠C=90°,BC=AD=12,
∴∠CEB+∠CBE=90°;
由(1)知,∠AEB=90°,
∴∠DEA+∠CEB=90°,
∴∠DEA=∠CBE,
∴△ADE∽△ECB,
AD
EC
DE
BC

12
25?x
x
12

解得,x1=9,x2=16;
当x=9时,25-x=16,即DE=9,EC=16;
当x=16时,25-x=9,即DE=16,EC=9;
∵CE>DE,
∴不合题意舍去;
在Rt△ECB中,
∵EB2=EC2+BC2
∴EB=
162+122
=20

由(1)知得,FG=
1
2
EB=10.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式