
(2006?台州)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x
(2006?台州)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四...
(2006?台州)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
展开
1个回答
展开全部
(1)△OBC≌△ABD,(1分)
理由:∵△AOB是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
又∵△CBD是等边三角形
∴BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,(3分)
即∠OBC=∠ABD,
在△OBC和△ABD中,
,
∴△OBC≌△ABD(SAS).(5分)
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,(8分)
∴Rt△OEA中,AE=2OA=2,
∴OE=
=
,
∴点E的位置不会发生变化,E的坐标为E(0,
).(10分)
理由:∵△AOB是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
又∵△CBD是等边三角形
∴BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,(3分)
即∠OBC=∠ABD,
在△OBC和△ABD中,
|
∴△OBC≌△ABD(SAS).(5分)
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,(8分)
∴Rt△OEA中,AE=2OA=2,
∴OE=
22?12 |
3 |
∴点E的位置不会发生变化,E的坐标为E(0,
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询