8时到9时之间,钟面上的时针和分针什么时间垂直

 我来答
zhangjunyh
推荐于2016-03-16 · TA获得超过1.2万个赞
知道大有可为答主
回答量:3145
采纳率:12%
帮助的人:794万
展开全部

题意解析:

钟表每个数字之间的度数为360°÷12=30°

时针转动一圈是12小时,则时针转动的速度就是360°÷12小时=360°÷720分钟=0.5°/分钟

分针转动一圈是1小时,则分针转动的速度就是360°÷1小时=360°÷60分钟=6°/分钟

8时到9时之间,时针和分针垂直的时刻有两个,一个是顺时针方向时针在分针之前,另一个是顺时针方向分针在时针之前。

①第一个时刻:(如下图所示)

当8时,分针和时针的夹角(优角)为30°×8=240°

所以,分针与时针垂直时,时针转动的角度+240°-分针转动的角度=90°

设表针转动了x分钟后,第一次垂直:

   0.5x+240-6x=90

   6x-0.5x=240-90

   5.5x=150

   x=150÷5.5

   x=300/11

   x=27又11分之3  (分钟)

所以当8时27又11分之3分钟时,时针与分针第一次垂直。

②第二个时刻:(如下图所示)

分针与时针垂直时,分针转动的角度-240°-时针转动的角度=90°

设表针转动了x分钟后,第二次垂直

  6x-240-0.5x=90

  6x-0.5x=240+90

  5.5x=330

  x=330÷5.5

  x=60

所以当9时整时,时针与分针第二次垂直。

康康羊羊羊
2015-03-09 · TA获得超过5.7万个赞
知道大有可为答主
回答量:1.7万
采纳率:2%
帮助的人:3061万
展开全部
从8点整开始考虑:此时,夹角为:240度,(看大的角,这是初始状态分针与时针的路程差)
要想垂直,分针必须多转动:240-90=150度,(这是实际的路程差)
两针的速度是恒定的,分针每分钟转6度,时针每分钟转0.5度,速度差为6-0.5=5.5
所以需要的时间是:(240-90)÷(6-0.5)
=150÷5.5
=27又3/11(分钟)
此时,是8时27又3/11分
如果考虑到追及以后,再成直角,事实上,则正好是9:00;
如果非得计算:道理相同,本来分针来时针后240度,现在要追及并再多转90度,则路程差是240+90=330(度)
所以时间是:330÷(6-0.5)
=330÷5.5
=60(分钟),即1小时
此时,是9时.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式