已知定义在R上的偶函数f(x),对任意x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=2-x-1,若
已知定义在R上的偶函数f(x),对任意x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=2-x-1,若在a>1时,关于x的方程f(x)-loga(...
已知定义在R上的偶函数f(x),对任意x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=2-x-1,若在a>1时,关于x的方程f(x)-loga(x+2)=0恰有三个不同的实数根,则实数a的取值范围是( )A.(1,2)B.(223,2]C.(-∞,223)∪(2,+∞)D.(2,+∞)
展开
展开全部
解:∵对于任意的x∈R,都有f(2-x)=f(x+2),
∴函数f(x)的图象关于直线x=2对称
又∵当x∈[-2,0]时,f(x)=2-x-1,且函数f(x)是定义在R上的偶函数,
若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,
则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:
又f(-2)=f(2)=3,则有 loga(2+2)<3,且loga(6+2)≥3,
解得:
<a≤2,
故选:B.
∴函数f(x)的图象关于直线x=2对称
又∵当x∈[-2,0]时,f(x)=2-x-1,且函数f(x)是定义在R上的偶函数,
若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,
则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:
又f(-2)=f(2)=3,则有 loga(2+2)<3,且loga(6+2)≥3,
解得:
3 | 4 |
故选:B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询