设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a2n和an的等差中项.(Ⅰ)证明数列{an
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a2n和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明...
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a2n和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明1S1+1S2+…+1Sn<2.
展开
展开全部
(Ⅰ)∵Sn是
和an的等差中项,
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an?12+an-1,
∴2Sn-2Sn-1=an2?an?12+an?an?1,
即2an=an2?an?12+an?an?1,
∴an2?an?12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则Sn=
,
∴
=
=2(
?
),
∴
+
+
+…+
=2[(1-
)+(
?
)+…+(
?
)]
=2(1-
)<2.
∴
a | 2 n |
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an?12+an-1,
∴2Sn-2Sn-1=an2?an?12+an?an?1,
即2an=an2?an?12+an?an?1,
∴an2?an?12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则Sn=
n(n+1) |
2 |
∴
1 |
Sn |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
=2[(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=2(1-
1 |
n+1 |
∴
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|