如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC
如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,...
如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.
展开
展开全部
(1)∵(a+2)2+
=0,
∴a=2=0,b-2=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
×2×4=4;
(2)解:∵CB∥y轴,BD∥AC,
∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,
过E作EF∥AC,如图①,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=
∠CAB=∠1,∠4=
∠ODB=∠2,
∴∠AED=∠1+∠2=
(∠CAB+∠ODB)=45°;
(3)解:①当P在y轴正半轴上时,如图②,
设P(0,t),
过P作MN∥x轴,AN∥y轴,BM∥y轴,
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4,
∴
-t-(t-2)=4,解得t=3,
②当P在y轴负半轴上时,如图③
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4
∴
+t-(2-t)=4,解得t=-1,
∴P(0,-1)或(0,3).
b-2 |
∴a=2=0,b-2=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
1 |
2 |
(2)解:∵CB∥y轴,BD∥AC,
∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,
过E作EF∥AC,如图①,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=
1 |
2 |
1 |
2 |
∴∠AED=∠1+∠2=
1 |
2 |
(3)解:①当P在y轴正半轴上时,如图②,
设P(0,t),
过P作MN∥x轴,AN∥y轴,BM∥y轴,
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4,
∴
4(t-2+t) |
2 |
②当P在y轴负半轴上时,如图③
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4
∴
4(-t+2-t) |
2 |
∴P(0,-1)或(0,3).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询