设a>ln2-1,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值,指出方程f(x)=0的根的个数;
设a>ln2-1,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值,指出方程f(x)=0的根的个数;(2)求证:当x>0时,不等式ex>x2-2a...
设a>ln2-1,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值,指出方程f(x)=0的根的个数;(2)求证:当x>0时,不等式ex>x2-2ax+1成立.
展开
1个回答
展开全部
解答:(1)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
故f(x)的单调递减区间是(-∞,ln2),
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a)>0,无极大值.
∴f(x)=0无解.
(2)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x | (-∞,ln2) | ln2 | (ln2,+∞) |
f′(x) | - | 0 | + |
f(x) | 单调递减? | 2(1-ln2+a) | 单调递增? |
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a)>0,无极大值.
∴f(x)=0无解.
(2)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询