已知点A,C分别是∠B的两条边上的点,点D,E分别是直线BA,BC上的点,直线AE,CD相交于点P,
(1)点D、E分别在线段BA、BC上,若角B=90°,且AD=BE,BD=CE,则角APD的度数为?(2)点D、E分别在线段AB、BC的延长线上,若角B=90°,AD=B...
(1)点D、E分别在线段BA、BC上,若角B=90°,且AD=BE,BD=CE,则角APD的度数为?
(2)点D、E分别在线段AB、BC的延长线上,若角B=90°,AD=BC,角APD=45°,求证:BD=CE
求较详细过程 展开
(2)点D、E分别在线段AB、BC的延长线上,若角B=90°,AD=BC,角APD=45°,求证:BD=CE
求较详细过程 展开
1个回答
展开全部
(1)
作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠B=90°,
∴∠FAD=∠B.
在△FAD和△DBC中,
AF=BD
∠FAD=∠B
AD=BC,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠FAD=90°,∠B=90°,
∴∠FAD+∠B=180°,
∴AF∥BC.
∵DB=CE,
∴AF=CE,
∴四边形AECF是平行四边形,
∴AE∥CF,
∴∠EAC=∠FCA.
∵∠APD=∠ACP+∠EAC,
∴∠APD=∠ACP+∠ACE=45°;
(2)
作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,
AF=BD
∠FAD=∠DBC
AD=BC,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四边形AECF是平行四边形,
∴AF=CE,
∴CE=BD.
作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠B=90°,
∴∠FAD=∠B.
在△FAD和△DBC中,
AF=BD
∠FAD=∠B
AD=BC,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠FAD=90°,∠B=90°,
∴∠FAD+∠B=180°,
∴AF∥BC.
∵DB=CE,
∴AF=CE,
∴四边形AECF是平行四边形,
∴AE∥CF,
∴∠EAC=∠FCA.
∵∠APD=∠ACP+∠EAC,
∴∠APD=∠ACP+∠ACE=45°;
(2)
作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,
AF=BD
∠FAD=∠DBC
AD=BC,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四边形AECF是平行四边形,
∴AF=CE,
∴CE=BD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询