如图,在△ABC中,AB=6,BC=4,点D在边BC的延长线上,∠ADC=∠BAC,点E在边BA的延长线上,∠E=∠DAC.(1
如图,在△ABC中,AB=6,BC=4,点D在边BC的延长线上,∠ADC=∠BAC,点E在边BA的延长线上,∠E=∠DAC.(1)找出图中的相似三角形,并证明;(2)设A...
如图,在△ABC中,AB=6,BC=4,点D在边BC的延长线上,∠ADC=∠BAC,点E在边BA的延长线上,∠E=∠DAC.(1)找出图中的相似三角形,并证明;(2)设AC=x,DE=y,求y关于x的函数解析式,并写出定义域;(3)△AED能否与△ABC相似?如果能够,请求出cosB的值;如果不能,请说明理由.
展开
1个回答
展开全部
(1)△ABC∽△DBA,△CAD∽△AED.(2分)
证明如下:∵∠B=∠B,∠ADC=∠BAC,
∴△ABC∽△DBA;
∵∠BAC+∠DAC=∠BAD=∠ADE+∠E,∠DAC=∠E,
∴∠BAC=∠ADE=∠ADC,
∴△CAD∽△AED;
(2)∵△ABC∽△DBA,
∴
=
=
,
∴DA=
=
=
,
∴BD=
=
=9.
∴CD=5.
∵△CAD∽△AED,
∴
=
.
∴DE?CD=DA2,
∴5y=(
x)2,
∴函数解析式为y=
x2,定义域为2<x<10;
(3)△AED能与△ABC相似.
∵∠BAC=∠ADE=∠ADC,∠BCA>∠ADC=∠ADE,∠BCA>∠CAD=∠E,
∴只有∠B=∠E=∠DAC时,△AED与△ABC相似.(1分)
这时,由于∠B+∠BAC+∠CAD+∠ADC=180°,
∴∠BAC+∠DAC=90°,
∴∠ACB=∠BAD=90°,
∴cosB=
=
=
.
证明如下:∵∠B=∠B,∠ADC=∠BAC,
∴△ABC∽△DBA;
∵∠BAC+∠DAC=∠BAD=∠ADE+∠E,∠DAC=∠E,
∴∠BAC=∠ADE=∠ADC,
∴△CAD∽△AED;
(2)∵△ABC∽△DBA,
∴
BA |
BD |
BC |
BA |
AC |
DA |
∴DA=
AC?BA |
BC |
x?6 |
4 |
3x |
2 |
∴BD=
BA2 |
BC |
36 |
4 |
∴CD=5.
∵△CAD∽△AED,
∴
DE |
DA |
DA |
CD |
∴DE?CD=DA2,
∴5y=(
3 |
2 |
∴函数解析式为y=
9 |
20 |
(3)△AED能与△ABC相似.
∵∠BAC=∠ADE=∠ADC,∠BCA>∠ADC=∠ADE,∠BCA>∠CAD=∠E,
∴只有∠B=∠E=∠DAC时,△AED与△ABC相似.(1分)
这时,由于∠B+∠BAC+∠CAD+∠ADC=180°,
∴∠BAC+∠DAC=90°,
∴∠ACB=∠BAD=90°,
∴cosB=
BC |
AB |
4 |
6 |
2 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询