在三角形ABC中,sinA/a=根号3cosB/b,如果b=2,则三角形ABC面积最大值为?
2014-11-19
展开全部
sinA/a=√3cosB/b
正弦定理
sinA/a=sinB/b
∴√3cosB/b=sinB/b
∴tanB=√3
∴B=π/3
余弦定理
cosB=(a²+c²-b²)/(2ac)
∴ac=a²+c²-4
ac+4=a²+c²
∵a²+c²≥2ac
∴ac+4≥2ac
ac≤4
△ABC面积
=1/2*ac*sinB
=1/2*√3/2*ac
≤1/2*√3/2*4
=√3
△ABC面积的最大值=√3
此时a=c=2
正弦定理
sinA/a=sinB/b
∴√3cosB/b=sinB/b
∴tanB=√3
∴B=π/3
余弦定理
cosB=(a²+c²-b²)/(2ac)
∴ac=a²+c²-4
ac+4=a²+c²
∵a²+c²≥2ac
∴ac+4≥2ac
ac≤4
△ABC面积
=1/2*ac*sinB
=1/2*√3/2*ac
≤1/2*√3/2*4
=√3
△ABC面积的最大值=√3
此时a=c=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询