在三角形ABC中,sinA/a=根号3cosB/b,如果b=2,则三角形ABC面积最大值为?

 我来答
匿名用户
2014-11-19
展开全部
sinA/a=√3cosB/b
正弦定理
sinA/a=sinB/b

∴√3cosB/b=sinB/b
∴tanB=√3
∴B=π/3
余弦定理
cosB=(a²+c²-b²)/(2ac)
∴ac=a²+c²-4
ac+4=a²+c²
∵a²+c²≥2ac
∴ac+4≥2ac
ac≤4
△ABC面积
=1/2*ac*sinB
=1/2*√3/2*ac
≤1/2*√3/2*4
=√3
△ABC面积的最大值=√3

此时a=c=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式