不定积分中,分部积分法问题。

 我来答
924235309
2015-04-08 · TA获得超过833个赞
知道小有建树答主
回答量:870
采纳率:88%
帮助的人:219万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
csdygfx
2015-04-08 · TA获得超过21.4万个赞
知道顶级答主
回答量:9.1万
采纳率:86%
帮助的人:7.8亿
展开全部

追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawshark12100
2015-04-08 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.9万
采纳率:76%
帮助的人:7351万
展开全部
分部积分,不是交换函数么

即sin2x和e^x交换啊

交换完后,sin2x在微分号内啊,即d(sin2x)

d(sin2x)不是等于2cos2x dx么
追问
那里为什么是4倍啊?
追答
再搞了一次分部积分啊……

d(cos2x)=-2sin(2x)dx

又多一个2啊
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
探索瀚海
高粉答主

推荐于2017-10-02 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2.8万
采纳率:88%
帮助的人:3094万
展开全部
  分部积分法是由微分的乘法定则和微积分基本定理推导而来的。其基本思路是将不易求得结果的积分形式转化为等价的但易于求出结果的积分形式。对于那些由两个不同函数组成的被积函数不便于进行换元的组合分成两部分进行积分,其原理是函数四则运算的求导法则逆用。
  定积分内
  与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a
  =[u(x)v(x) - ∫v(x)u'(x)dx]b/a
  =[u(x)v(x)]b/a- ∫b/a v(x)u'(x)dx
  简记作 ∫b/a uv'dx=[uv]b/a-∫b/a u'vdx 或∫b/a udv=[uv]b/a-∫b/a vdu
  例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx
  从这个例子中就可以看到在定积分上是如何应用的。
  不定积分内
  具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。原公式: (uv)'=u'v+uv'求导公式 : d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv
  移项后,成为:udv = d(uv) -vdu
  两边积分得到:∫udv = uv - ∫vdu
  在传统的微积分教材里分部积分法通常写成不定积分形式:
  ∫v(x)u'(x)dx=v(x)u(x)- ∫v'(x)u(x)dx
  例:∫xcosxdx = xsinx - ∫sinxdx
  从这个例子中,就可以体会出分部积分法的应用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式