(a+b)^n=C(0,n)a^n+C(1,n)a^(n-1)b+....+C(k,n)a^(n-k)b^k+.....+C(n,n)b^n.
这里C(k,n)表示从n个不同元素中取出k个的组合数。
这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。
扩展资料:
通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至李善兰自然数幂求和公式的原形。
当n为奇数时,由1+2+3+4+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N
=N+N+N+...+N加或减去所有添加的二项式展开式数
=(1+N)N减去所有添加的二项式展开式数。
当n为偶数时,由1+2+3+4+5+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+[4+(N-4)]...+[(N-1)+(N-N-1)]+N
=2N+2[(N-2)+(N-4)+(N-6)+...0或1]加或减去所有添加的二项式展开式数
又当n为偶数时,由1+2+3+4+5+6+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=[N+1]+[(N-1)+2]+[(N-2)+3]+...+[(N-N-1)+(N-1)]
=2[(N-1)+(N-3)+(N-5)+...0或1]加或减去所有添加的二项式展开式数,合并n为偶数时2S的两个计算结果,可以得到s=N+(N-1)+(N-2)+...+1的计算公式。
其中,所有添加的二项式展开式数,按下列二项式展开式确定,如此可以顺利进行自然数的1至n次幂的求和公式的递进推导,最终可以推导至李善兰自然数幂求和公式。
参考资料:百度百科——二项式定理
=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+C(n,3)a^(n-3)b^3+……+C(n,n-2)a^2b^(n-2)+C(n,n-1)ab^(n-1)+b^n
其中C是组合符号,(n,1)的意思是下n上1,下同。
=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+C(n,3)a^(n-3)b^3+……+C(n,n-2)a^2b^(n-2)+C(n,n-1)ab^(n-1)+b^n
其中C是组合符号,(n,1)的意思是下n上1,下同。
一楼是对的
请采纳^_^