数学解决问题的策略

 我来答
音乐随身吧

2020-11-24 · TA获得超过3.8万个赞
知道大有可为答主
回答量:3.4万
采纳率:83%
帮助的人:1111万
展开全部
1.学会运用函数与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

2.学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3.要学会抢得分点。

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。

4.学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5.学会运用分类讨论的思想。

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏
澄琇035

2020-11-24 · TA获得超过4284个赞
知道大有可为答主
回答量:5446
采纳率:100%
帮助的人:134万
展开全部
在解题过程中,运用画图的方法,画出与题意相关的示意图,借助示意图来帮助推理、思考,这是小学数学解决问题中最常用的一种策略。

常见的画图方式有:线段图、集合图等。
将疑难问题的文字“翻译成图”,能够立竿见影地理清思路,找到解题策略。

例:某班有45位同学,其中有30人没有参加数学小组,有20人参加航模小组,有8小组都参加了。问:只参加一个小组的学生有多少人?

分析:画出集合图。
方框表示全班所有人。区域①表示只参加数学小组的同学。区域②表示只参加航模小组的人。区域③表示同时参加数学、航模两个小组的人。区域④表示两个小组都没有参加的人。

图片、图形转达信息的效率要远远高于文字和语言。
利用集合图将复杂的文字概念关系转化为直观的图,可以帮助孩子快速理清各种量之间的逻辑关系,提高解题效率。

转化策略
转化也是小学数学解决问题中常用的一种方法,能把较复杂的问题转化为简单问题,能把未知的问题变为已知的问题。

例:妈妈买了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的价格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:“每千克柑橘的价格是生梨的4倍”,这句话就是转化的条件。我们可以这样想:买1千克柑橘的价钱可以买4千克生梨,那么买2千克柑橘的价钱可以买2×4=8千克生梨。所以总共花了28.6元相当于买了(8+5)千克生梨所花的钱。通过转换,问题就得以解决了。

列表策略
列表策略,又叫列举策略。是将问题的条件信息用表格的形式列举出来,便于从中发现问题、分析数量关系,从而排除非数学信息的干扰,同时也便于找到解决问题的方法。

例:有1张五元纸币,2张两元纸币,8张1元纸币,要拿9元钱,有几种拿法?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华晓灵on
2020-11-24 · 超过12用户采纳过TA的回答
知道答主
回答量:32
采纳率:100%
帮助的人:6.1万
展开全部
选择题可以将选项代入题目之中,反过来验证正确答案,标准考试的图都很准确,可以用到尺子和量角器,有时候画图也可以解决填空题的问题,关于问答题,还是多多刷题,熟悉公式用法跟简便计算的方法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式