算线性方程组的通解,要详细过程
2个回答
展开全部
通解就是找到一个满足方程的解.
用小学初中的知识来做的话,这个时候我们就是要消元.
把x1用其他未知量表示出来带入其它方程化简,这个时候就少了一个未知量,少了一个方程.
再亦同理,把x2,x3.....带入其它方程化简,最后就剩下了一个方程,里面可能有多个量.
因为我们只要一个任意的解就可以了,所以这个时候你随便赋值未知量满足方程就可以.
回返带入得到一组未知量的解.这个就可以作为通解. (如果方程和未知量不多的具体题目中可以这么算)
线性代数课本里面的方法就是高斯消元法.
把方程进行排列之后,系数组成矩阵,从底部到高进行带入消减,(其实就类似于上面的过程)
最后得到一个k*k的未知量系数组成的矩阵,加上右边的数值组成增光矩阵.
这个时候就是一个k元一次方程组,消元可以得到唯一的解,是关于x1,x2,...,x(k)的.
再对x(k+1)到x(n)进行一个简单赋值,就可以得到一组通解.
PS:如果你看不懂书上的过程你就找一个具体的方程组,按照书上的过程一步一步的实验几次,你就明白了,只是盲目的看容易花眼.O(∩_∩)O~
用小学初中的知识来做的话,这个时候我们就是要消元.
把x1用其他未知量表示出来带入其它方程化简,这个时候就少了一个未知量,少了一个方程.
再亦同理,把x2,x3.....带入其它方程化简,最后就剩下了一个方程,里面可能有多个量.
因为我们只要一个任意的解就可以了,所以这个时候你随便赋值未知量满足方程就可以.
回返带入得到一组未知量的解.这个就可以作为通解. (如果方程和未知量不多的具体题目中可以这么算)
线性代数课本里面的方法就是高斯消元法.
把方程进行排列之后,系数组成矩阵,从底部到高进行带入消减,(其实就类似于上面的过程)
最后得到一个k*k的未知量系数组成的矩阵,加上右边的数值组成增光矩阵.
这个时候就是一个k元一次方程组,消元可以得到唯一的解,是关于x1,x2,...,x(k)的.
再对x(k+1)到x(n)进行一个简单赋值,就可以得到一组通解.
PS:如果你看不懂书上的过程你就找一个具体的方程组,按照书上的过程一步一步的实验几次,你就明白了,只是盲目的看容易花眼.O(∩_∩)O~
追问
你在说废话,我要的是过程
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询