一道数学题,求解 10
3个回答
展开全部
解:
分子:1-1/2+1/3-1/4+……+1/49-1/50
=1+1/2+1/3+1/4+……+1/49+1/50-2×(1/2+1/4+……+1/50)
=1+1/2+1/3+1/4+……+1/49+1/50-(1+1/2+……+1/25)
=1/26+1/27+……+1/50
分母:
1/(1+51) +1/(2+52)+1/(3+53)+.....+1/(24+74)+1/(25+75)
=1/52 +1/54+.........+1/98+1/100
=(1/2)x(1/26+1/27+1/28+....+1/49+1/50)
所以原式=(1/26+1/27+……+1/50)÷[(1/2)x(1/26+1/27+1/28+....+1/49+1/50)]
=2
分子:1-1/2+1/3-1/4+……+1/49-1/50
=1+1/2+1/3+1/4+……+1/49+1/50-2×(1/2+1/4+……+1/50)
=1+1/2+1/3+1/4+……+1/49+1/50-(1+1/2+……+1/25)
=1/26+1/27+……+1/50
分母:
1/(1+51) +1/(2+52)+1/(3+53)+.....+1/(24+74)+1/(25+75)
=1/52 +1/54+.........+1/98+1/100
=(1/2)x(1/26+1/27+1/28+....+1/49+1/50)
所以原式=(1/26+1/27+……+1/50)÷[(1/2)x(1/26+1/27+1/28+....+1/49+1/50)]
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询