判断题:计算不定积分时,被积函数中的常数因子可以提到积分号外为什么不正确?求大神详细指点 70

 我来答
教育小百科达人
2019-04-15 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:457万
展开全部

定积分中不为0的常数因子可以提到积分号外,定积分中的任意常数因子都可以提到积分号外。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

扩展资料:

被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。

参考资料来源:百度百科——不定积分

天88666
2019-05-02
知道答主
回答量:7
采纳率:0%
帮助的人:1897
展开全部
你说的∫(1/2x)dx和1/2∫(1/x)dx积出的原函数不同,其实是你没搞清楚原函数是可以为无穷多个的,
∫(1/2x)dx=1/2ln2x+C
1/2∫(1/x)dx=1/2lnx+C
1/2ln2x和1/2lnx相差的是常数1/2ln2,所以1/2ln2x+C和1/2lnx+C表示的是同样的原函数,至于你说的判断题为什么错,因为在不定积分中0因子是不可以提出的,如果是定积分,这道判断题就是对的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yisuch
2017-02-27
知道答主
回答量:12
采纳率:0%
帮助的人:6.2万
展开全部
必须是不为0的 常数因子 才能提到积分号外
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友e5f269e
2018-01-13
知道答主
回答量:2
采纳率:0%
帮助的人:1966
展开全部
不定积分中不为0的常数因子可以提到积分号外
定积分中的任意常数因子都可以提到积分号外
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
柯西楠波
2015-03-22
知道答主
回答量:12
采纳率:0%
帮助的人:6万
展开全部
常数可以提到外面,好好看看概念!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式