数学:y=sin√(x+√(1-x²))的连续区间

 我来答
旅游小达人Ky
高粉答主

2021-10-21 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:38.7万
展开全部

y=sin根号(x+根号(1-x^2))

x+根号(1-x^2)>=0

1-x^2>=0

则 -1<=x<=1

(1) x>0

0<=x<=1

(2)x<0

根号(1-x^2)>=|-x|

两边平方

x^2<=1/2

-根号2/2<=x<=0

上述的各种区间正是实数轴上的全体连通子集。由此可推得,一个区间在连续函数下的像也是一个区间,这是介值定理的另外一个表述。

区间也恰好涵盖了实数集的所有凸的子集。另,设X是 的一个子集,如果Y是包含X的最小闭区间(即如果 Z是另一个包含X的闭区间, Y也包含于Z), 便是Y的凸包

点儿点儿小旋律
2015-04-14 · TA获得超过403个赞
知道小有建树答主
回答量:399
采纳率:0%
帮助的人:292万
展开全部
由√(1-x²)知x属于[-1,1],又 √(x+√(1-x²)得x+√(1-x²)非负,即 √(1-x²)≥-x,这个显然成立,所以连续区间就在[-1,1]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2015-04-14
展开全部
y=sin根号(x+根号(1-x^2))
x+根号(1-x^2)>=0
1-x^2>=0
则 -1<=x<=1
(1) x>0
0<=x<=1
(2)x<0
根号(1-x^2)>=|-x|
两边平方
x^2<=1/2
-根号2/2<=x<=0
综合得
-根号2/2<=x<=1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式