opencv3.0新增了什么功能
1个回答
2015-09-02
展开全部
OpenCV 2.0已经发布5年了,它带来了全新的C++接口,标志着这个项目的开始。在2.0的整个生命周期中,我们增加了新的平台支持,包括iOS和Andriod,通过CUDA和OpenCL实现了GPU加速,为Python和java用户提供了接口,基于github和buildbot构建了充满艺术感的持续集成系统,所以才有了稳定的OpenCV 2.4.x,它被全世界的很多公司和学校所采用。
现在,我们很高兴地宣布3.0时代的开始(OpenCV 3.0 release 预计会在今年圣诞节左右发布)。在3.0时代不会有像2.0时代一样激进的尝试,它有足够稳定的改进,这为我们,也为你们以及伟大的OpenCV社区带来了许多全新的机会。请查看更新日志,我们简要说几点。
1. 项目架构的改变。
最初的时候,OpenCV是一个相对整体的项目,都是以整体的形式构建和装配,在很多年的时间里,这都是一个很好的策略。然而,随着功能的增加,包括bleeding-edge算法发布前的几分钟,一个pull请求提交到我们的仓库,越来越多的贡献者(非常感谢你们),我们决定像其他大项目一样,抛弃整体架构,使用内核+插件的架构形式。
除了我们的主仓库和增加的”test data“仓库,我们还有了http://github.com/itseez/opencv_contrib,这里有很多让人兴奋的功能,包括你们已经知道的面部识别和文本探测,还包括文本识别、新的边缘检测器、充满艺术感的修复、深度地图处理、新的光线流和追踪算法等。
opencv与opencv_contrib之间的区别是:
他们都由我们的持续集成系统维护,尽管opencv_contrib的单元测试并不常规运行。
全部或者一些额外的模块可以用我们的构建系统构建,把OPENCV_EXTRA_MODULES_PATH=/modules传递给CMake。
contrib的文档是自动生成的,可以在docs.opencv.org/master获得,它会在OpenCV 3.0 beta版本的时候更加完善、并发布。
主OpenCV是Itseez支持的代码,有非常稳定的API以及一点点创新。
opencv_contrib是大多数实验性代码放置的地方,一些API可能会改变,我们欢迎贡献者贡献你们新的精彩算法。
2. 感谢Intel和AMD公司的支持,我们让很多视觉算法实现的GPU加速,并且对于用户来说,都是十分易得的。这个技术可以称之为T-API (“transparent API”),关于这个话题的单独指南在准备当中,仍然非常欢迎你来看一下,试一下我们的T-API的例子,研究一下它如何工作。
3. Intel公司还给了我们另一份大礼。IPP的一个子集默认接入OpenCV,用户可以轻松得到。其中包含了可以将使用IPP加速的OpenCV再次分发的许可。如下图所示,在IPP的帮助下,很多函数都实现了显著的加速。
4. 最后,OpenCV 3.0带来了很新的功能,这是其中的一部分:
Text detection and recognition by Lluis Gomez
HDR by Fedor Morozov and Alexander Shishkov
KAZE/A-KAZE by Eugene Khvedchenya, the algorithm author Pablo Alcantarilla and some improvements by F. Morozov.
Smart segmentation and edge-aware filters by Vitaly Lyudvichenko, Yuri Gitman, Alexander Shishkov and Alexander Mordvintsev
Car detection using Waldboost, ACF by Vlad Shakhuro and Nikita Manovich
TLD tracker and several common-use optimization algorithms by Alex Leontiev
Matlab bindings by Hilton Bristow, with support from Mathworks.
Greatly extended Python bindings, including Python 3 support, and several OpenCV+Python tutorials by Alexander Mordvintsev, Abid Rahman and others.
3D Visualization using VTK by Ozan Tonkal and Anatoly Baksheev.
RGBD module by Vincent Rabaud
Line Segment Detector by Daniel Angelov
Many useful Computational Photography algorithms by Siddharth Kherada
Shape descriptors, matching and morphing shapes (shape module) by Juan Manuel Perez Rua and Ilya Lysenkov
Long-term tracking + saliency-based improvements (tracking module) by Antonella Cascitelli and Francesco Puja
Another good pose estimation algorithm and the tutorial on pose estimation by Edgar Riba and Alexander Shishkov
Line descriptors and matchers by Biagio Montesano and Manuele Tambourin
Myriads of improvements in various parts of the library by Steven Puttemans; thank you a lot, Steven!
Several NEON optimizations by Adrian Stratulat, Cody Rigney, Alexander Petrikov, Yury Gorbachev and others.
Fast foreach loop over cv::Mat by Kazuki Matsuda
Image alignment (ECC algorithm) by Georgios Evangelidis
GDAL image support by Marvin Smith
RGBD module by Vincent Rabaud
Fisheye camera model by Ilya Krylov
OSX framework build script by Eugene Khvedchenya
Multiple FLANN improvements by Pierre-Emmanuel Viel
Improved WinRT support by Gregory Morse
Latent SVM Cascade by Evgeniy Kozhinov and NNSU team (awaiting integration)
Logistic regression by Rahul Kavi
Five-point pose estimation algorithm by Bo Li
现在,我们很高兴地宣布3.0时代的开始(OpenCV 3.0 release 预计会在今年圣诞节左右发布)。在3.0时代不会有像2.0时代一样激进的尝试,它有足够稳定的改进,这为我们,也为你们以及伟大的OpenCV社区带来了许多全新的机会。请查看更新日志,我们简要说几点。
1. 项目架构的改变。
最初的时候,OpenCV是一个相对整体的项目,都是以整体的形式构建和装配,在很多年的时间里,这都是一个很好的策略。然而,随着功能的增加,包括bleeding-edge算法发布前的几分钟,一个pull请求提交到我们的仓库,越来越多的贡献者(非常感谢你们),我们决定像其他大项目一样,抛弃整体架构,使用内核+插件的架构形式。
除了我们的主仓库和增加的”test data“仓库,我们还有了http://github.com/itseez/opencv_contrib,这里有很多让人兴奋的功能,包括你们已经知道的面部识别和文本探测,还包括文本识别、新的边缘检测器、充满艺术感的修复、深度地图处理、新的光线流和追踪算法等。
opencv与opencv_contrib之间的区别是:
他们都由我们的持续集成系统维护,尽管opencv_contrib的单元测试并不常规运行。
全部或者一些额外的模块可以用我们的构建系统构建,把OPENCV_EXTRA_MODULES_PATH=/modules传递给CMake。
contrib的文档是自动生成的,可以在docs.opencv.org/master获得,它会在OpenCV 3.0 beta版本的时候更加完善、并发布。
主OpenCV是Itseez支持的代码,有非常稳定的API以及一点点创新。
opencv_contrib是大多数实验性代码放置的地方,一些API可能会改变,我们欢迎贡献者贡献你们新的精彩算法。
2. 感谢Intel和AMD公司的支持,我们让很多视觉算法实现的GPU加速,并且对于用户来说,都是十分易得的。这个技术可以称之为T-API (“transparent API”),关于这个话题的单独指南在准备当中,仍然非常欢迎你来看一下,试一下我们的T-API的例子,研究一下它如何工作。
3. Intel公司还给了我们另一份大礼。IPP的一个子集默认接入OpenCV,用户可以轻松得到。其中包含了可以将使用IPP加速的OpenCV再次分发的许可。如下图所示,在IPP的帮助下,很多函数都实现了显著的加速。
4. 最后,OpenCV 3.0带来了很新的功能,这是其中的一部分:
Text detection and recognition by Lluis Gomez
HDR by Fedor Morozov and Alexander Shishkov
KAZE/A-KAZE by Eugene Khvedchenya, the algorithm author Pablo Alcantarilla and some improvements by F. Morozov.
Smart segmentation and edge-aware filters by Vitaly Lyudvichenko, Yuri Gitman, Alexander Shishkov and Alexander Mordvintsev
Car detection using Waldboost, ACF by Vlad Shakhuro and Nikita Manovich
TLD tracker and several common-use optimization algorithms by Alex Leontiev
Matlab bindings by Hilton Bristow, with support from Mathworks.
Greatly extended Python bindings, including Python 3 support, and several OpenCV+Python tutorials by Alexander Mordvintsev, Abid Rahman and others.
3D Visualization using VTK by Ozan Tonkal and Anatoly Baksheev.
RGBD module by Vincent Rabaud
Line Segment Detector by Daniel Angelov
Many useful Computational Photography algorithms by Siddharth Kherada
Shape descriptors, matching and morphing shapes (shape module) by Juan Manuel Perez Rua and Ilya Lysenkov
Long-term tracking + saliency-based improvements (tracking module) by Antonella Cascitelli and Francesco Puja
Another good pose estimation algorithm and the tutorial on pose estimation by Edgar Riba and Alexander Shishkov
Line descriptors and matchers by Biagio Montesano and Manuele Tambourin
Myriads of improvements in various parts of the library by Steven Puttemans; thank you a lot, Steven!
Several NEON optimizations by Adrian Stratulat, Cody Rigney, Alexander Petrikov, Yury Gorbachev and others.
Fast foreach loop over cv::Mat by Kazuki Matsuda
Image alignment (ECC algorithm) by Georgios Evangelidis
GDAL image support by Marvin Smith
RGBD module by Vincent Rabaud
Fisheye camera model by Ilya Krylov
OSX framework build script by Eugene Khvedchenya
Multiple FLANN improvements by Pierre-Emmanuel Viel
Improved WinRT support by Gregory Morse
Latent SVM Cascade by Evgeniy Kozhinov and NNSU team (awaiting integration)
Logistic regression by Rahul Kavi
Five-point pose estimation algorithm by Bo Li
东莞大凡
2024-08-07 广告
2024-08-07 广告
OpenCV标定板是东莞市大凡光学科技有限公司在相机标定中常用的工具。它通常由黑白格点按一定规则排列在平面上组成,如棋盘格或圆形格等。在相机标定时,将标定板置于不同位置和姿态下拍摄图像,利用OpenCV库中的函数检测标定板上的角点或圆心,进...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询