行列式[A]与与其伴随矩阵的行列式[A*]有什么关系?
矩阵的值与其伴随矩阵的行列式值
│A*│与│A│的关系式
│A*│=│A│^(n-1)
伴随矩阵除以原矩阵行列式的值就是原矩阵的逆矩阵。
如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
扩展资料
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置 (AB)T=BTAT
矩阵乘法一般不满足交换律。
矩阵的值与其伴随矩阵的行列式值
│A*│与│A│的关系式
│A*│=│A│^(n-1)
伴随矩阵除以原矩阵行列式的值就是原矩阵的逆矩阵。
如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
扩展资料:
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
参考资料来源:百度百科-行列式
矩阵的值与其伴随矩阵的行列式值
│A*│与│A│的关系式
│A*│=│A│^(n-1)
伴随矩阵除以原矩阵行列式的值就是原矩阵的逆矩阵。
如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
行列式的性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
广告 您可能关注的内容 |