已知数列{an-1}的前n项和为sn,a1=2,2sn=3an-4 1证明数列{an-1}是等比数
已知数列{an-1}的前n项和为sn,a1=2,2sn=3an-41证明数列{an-1}是等比数列2设bn+1/3=an+n-1/3平方n求数列{bn}的前n项和Mn...
已知数列{an-1}的前n项和为sn,a1=2,2sn=3an-4
1证明数列{an-1}是等比数列
2设bn+1/3=an+n-1/3平方n求数列{bn}的前n项和Mn 展开
1证明数列{an-1}是等比数列
2设bn+1/3=an+n-1/3平方n求数列{bn}的前n项和Mn 展开
1个回答
展开全部
(1)
cn = an -1
Sn =b1+b2+...+bn
2Sn=3an-4
n=1
2c1= 3a1-4
c1= (6-4)/2 = 1
2Sn=3an-4
= 3(an -1) -1
=3bn -1
for n >=2
cn = Sn -S(n-1)
2cn = 3cn - 2c(n-1)
cn = 2c(n-1)
=> {cn} 是等比数列, q=2
=> {an - 1} 是等比数列, q=2
an - 1 = 2^(n-1) .(a1 - 1)
=2^(n-1)
an = 1+2^(n-1)
----------------------
(2)
bn+1/3=an+n- 1/3^n
求数列{bn}的前n项和Mn
Solution
bn+1/3=an+n- 1/3^n
bn+1/3=1+2^(n-1) +n- 1/3^n
bn = 2/3 + 2^(n-1) +n- 1/3^n
Mn = b1+b2+...+bn
= (2/3)n + (2^n - 1)+ (1/2)n(n+1) - (1/2)( 1- 1/3^n)
cn = an -1
Sn =b1+b2+...+bn
2Sn=3an-4
n=1
2c1= 3a1-4
c1= (6-4)/2 = 1
2Sn=3an-4
= 3(an -1) -1
=3bn -1
for n >=2
cn = Sn -S(n-1)
2cn = 3cn - 2c(n-1)
cn = 2c(n-1)
=> {cn} 是等比数列, q=2
=> {an - 1} 是等比数列, q=2
an - 1 = 2^(n-1) .(a1 - 1)
=2^(n-1)
an = 1+2^(n-1)
----------------------
(2)
bn+1/3=an+n- 1/3^n
求数列{bn}的前n项和Mn
Solution
bn+1/3=an+n- 1/3^n
bn+1/3=1+2^(n-1) +n- 1/3^n
bn = 2/3 + 2^(n-1) +n- 1/3^n
Mn = b1+b2+...+bn
= (2/3)n + (2^n - 1)+ (1/2)n(n+1) - (1/2)( 1- 1/3^n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询