在总体n(80,400)中随机抽取一个容量为100的样本,求p(77<=x<83) 5
(35-0.4*2.58,35 0.4*2.58)=(34,36)
样本均值且用Y表示,则Y服从N(80,4)
P(|Y-80|
样本均值服从N(12,0.8)
P(|样本均值-12|>1)=P(|样本均值-12|/根号0.8>根号5/2)=2F(1.118)-1
=0.7698
P{max{ X1,X2,X3,X4,X5}>15}
=1-P{max{ X1,X2,X3,X4,X5}≤15}
=1-[P(X≤15)]^5
=1-[P(X-12)/2≤1.5)]^5
=1-F(1.5)^5
1-0.9332^5=0.3023;
P{min{ X1,X2,X3,X4,X5}<10}=1-P{min{ X1,X2,X3,X4,X5}≥10}.
=1-[P(X≥10)]^5=1-[1-P(X-12)/2<-1)]^5=1-F(1)^5
=1-(0.8413)^5=0.5786
扩展资料:
均值是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
均值是统计中的一个重要概念。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。
参考资料来源:百度百科-样本均值