求解,过程详细
1个回答
展开全部
解:
α∈(0,π),sinα>0
sinα=√(1-cos²α)=√[1-(4/5)²]=3/5
tanα=sinα/cosα=(3/5)/(4/5)=3/4
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
tanβ=[tanα-tan(α-β)]/[tan(α-β)tanα+1]
=(3/4 -1/2)/[(1/2)(3/4)+1]
=2/11
tan(2α-β)=tan[α+(α-β)]
=[tanα+tan(α-β)]/[1-tanαtan(α-β)]
=(3/4 +1/2)/[1-(3/4)(1/2)]
=2
α∈(0,π),sinα>0
sinα=√(1-cos²α)=√[1-(4/5)²]=3/5
tanα=sinα/cosα=(3/5)/(4/5)=3/4
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
tanβ=[tanα-tan(α-β)]/[tan(α-β)tanα+1]
=(3/4 -1/2)/[(1/2)(3/4)+1]
=2/11
tan(2α-β)=tan[α+(α-β)]
=[tanα+tan(α-β)]/[1-tanαtan(α-β)]
=(3/4 +1/2)/[1-(3/4)(1/2)]
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询