![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知函数f(x)在正无穷到负无穷内可导,f'(0)=e,且对任意的x,y满足f(x+y)=exf( 10
已知函数f(x)在正无穷到负无穷内可导,f'(0)=e,且对任意的x,y满足f(x+y)=exf(y)+eyf(x)试证明这两问非常感谢!!n...
已知函数f(x)在正无穷到负无穷内可导,f'(0)=e,且对任意的x,y满足f(x+y)=exf(y)+eyf(x) 试证明这两问 非常感谢!!n
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏10(财富值+成长值)
1个回答
展开全部
f'(x)=lim(y->0) [f(x+y)-f(x)]/y
=lim [e^x*f(y)+e^y*f(x)-f(x)]/y
=lim e^x*f(y)/y + lim f(x)(e^y-1)/y
=e^x*limf(y)/y + f(x)lim (e^y-1)/y
=e^x*f'(0) + f(x)
=e^x*e+f(x)
=f(x)+e^(x+1)
即可
=lim [e^x*f(y)+e^y*f(x)-f(x)]/y
=lim e^x*f(y)/y + lim f(x)(e^y-1)/y
=e^x*limf(y)/y + f(x)lim (e^y-1)/y
=e^x*f'(0) + f(x)
=e^x*e+f(x)
=f(x)+e^(x+1)
即可
本回答被网友采纳
![](http://iknow-zhidao.bdimg.com/static/question-new/widget/value-comment/img/support_10.6efc748.gif?x-bce-process=image/format,f_auto/quality,q_80)
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询