请问椭圆形是不是圆形?
椭圆不是圆形。
椭圆的定义:椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
圆的定义:在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
椭圆和圆的定义是不同的,中心在原点的椭圆上点的距离到原点的距离不相等,中心在原点的圆上的点的距离到原点的距离是相等的。
扩展资料:
圆的一些性质:
(1)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(2)弦切角的度数等于它所夹的弧的度数的一半。
(3)圆内角的度数等于这个角所对的弧的度数之和的一半。
(4)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(5)周长相等,圆面积比正方形、长方形、三角形的面积大。
椭圆的相关定理:
(1)定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。
(2)定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。
参考资料:百度百科-椭圆
参考资料:百度百科-圆
不属于,圆属于椭圆的一种特殊情况(当椭圆的长半轴和短半轴相等时)。
拓展资料:
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。