第一类曲面积分的几何意义是什么?

第一类曲面积分的几何意义是什么?如图问号处,为什么求定球面内部的面积是用第一类曲面积分。... 第一类曲面积分的几何意义是什么?如图问号处,为什么求定球面内部的面积是用第一类曲面积分。 展开
 我来答
河传杨颖
高粉答主

2019-06-24 · 说的都是干货,快来关注
知道小有建树答主
回答量:745
采纳率:100%
帮助的人:19.5万
展开全部

第一型曲面积分几何意义来源于对给定密度函数的空间曲面,计算该曲面的质量。

第一型曲面积分的几何意义:

表示以

为面密度的空间曲面S的“质量”,即将空间曲面S想象成一块光滑的(可微的)不折叠的(单值的)质量分布服从 

的薄板,故

在S上的第一型曲面积分就是薄板的代数质量。

扩展资料

当动线按照一定的规律运动时,形成的曲面称为规则曲面;当动线作不规则运动时,形成的曲面称为不规则曲面。形成曲面的母线可以是直线,也可以是曲线。

如果曲面是由直线运动形成的则称为直线面(如圆柱面、圆锥面等);由曲线运动形成的曲面则称为曲线面(如球面、环面等)。

直线面的连续两直素线彼此平行或相交(即它们位于同一平面上),这种能无变形地展开成一平面的曲面,属于可展曲面。如连续两直素线彼此交叉(即它们不位于同一平面上)的曲面。

参考资料来源:百度百科-曲面积分

梦色十年
高粉答主

2019-06-09 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:91.2万
展开全部

第一型曲面积分几何意义来源于对给定密度函数的空间曲面,计算该曲面的质量。

第一型曲面积分的几何意义:

表示以

为面密度的空间曲面S的“质量”,即将空间曲面S想象成一块光滑的(可微的)不折叠的(单值的)质量分布服从 

的薄板,故

在S上的第一型曲面积分就是薄板的代数质量。

扩展资料:

曲面积分的物理意义简单的说第一类是光滑曲面型构件的质量,第二类是通过指定侧的流量。

二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积。

三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量。

第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量。

第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功。

第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量。

第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量.物理上形象的说,就是通过某个曲面的磁感线条数...。

参考资料来源:百度百科-曲面积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
水文水资源
高粉答主

推荐于2017-12-15 · 水文学及水资源相关专业产品
水文水资源
采纳数:2067 获赞数:7112

向TA提问 私信TA
展开全部
对于第一类曲面积分,如果被积函数是1,则积分表示的几何意义就是曲面Σ的面积。
如果被积函数不是1(当然也不能是0),则积分有它的物理意义,即曲面Σ的质量,被积函数就是其面密度函数。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
步芬芬6Z
2016-07-21 · TA获得超过1149个赞
知道小有建树答主
回答量:205
采纳率:100%
帮助的人:28.2万
展开全部
曲线积分是在同一个平面上线与线的封闭面积,就是形成了平面四边形;曲面积分是在一个由曲线积分形成的平面上,再进行体上的积分,就像杯子的底是由XY曲线积分形成,而它的杯子的上缘线就是Z的轨迹线,当然Z不一定是像杯子上缘线一样平行于底面。

曲线曲面积分还是按照物理含义理解比较好,几何含义的限制太大了,虽然视觉上直观,但不及物理的广阔。有的时候在三维上是找不到几何含义的,比如被积函数不是1的三重积分就没有几何意义,但四维上思考几何形状就超出了人的几何想象。曲面积分的物理意义简单的说第一类是光滑曲面型构件的质量,第二类是通过指定侧的流量。

二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积..
三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量..
第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量.
第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功.
第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量.
第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量.物理上形象的说,就是通过某个曲面的磁感线条数...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式