三角形有什么规律?
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
扩展资料:
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
一、三角形角的规律:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
二、三角形边的规律:
1 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
2、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
3、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
4、直角三角形斜边的中线等于斜边的一半。
5、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
6、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
三、三角形的边和角关系规律:
1、 等底同高的三角形面积相等。
2、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
3、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
4、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
5、 在同一个三角形内,大边对大角,大角对大边。
一、三角形角的规律:
1、 在平面上三角形的内角和等于180°(内角和定理);
2 、在平面上三角形的外角和等于360° (外角和定理);
3、在平面上三角形的外角等于与其不相邻的两个内角之和;
推论:三角形的一个外角大于任何一个和它不相邻的内角;
4、一个三角形的三个内角中最少有两个锐角;
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
二、三角形边的规律:
1、三角形任意两边之和大于第三边,任意两边之差小于第三边;
2、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半;
3、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理);
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形;
4、直角三角形斜边的中线等于斜边的一半;
5、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点;
6、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4;
7、等底同高的三角形面积相等。
角
1 在平面上三角形的内角和等于180°(内角和定理);
2 在平面上三角形的外角和等于360° (外角和定理);
3 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4 一个三角形的三个内角中最少有两个锐角。
5 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
边
6 三角形任意两边之和大于第三边,任意两边之差小于第三边。
7 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9直角三角形斜边的中线等于斜边的一半。
10三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12 等底同高的三角形面积相等。
13 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
1、每个数等于它上方两数之和。
2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n项。
4、第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
5、第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
7、(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
8、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
9、将第n行的各数值,分别乘以10的列数m-1次方,然后把这些数值相加的和等于11的n-1次方。
扩展资料:
发现历程:
二项式系数表为在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。
在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。
1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式。 二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。
参考资料来源:百度百科——帕斯卡三角形