如何用 Python 中的 NLTK 对中文进行分析和处理

 我来答
就烦条0o
2016-09-04 · 知道合伙人软件行家
就烦条0o
知道合伙人软件行家
采纳数:33315 获赞数:46492
从事多年系统运维,喜欢编写各种小程序和脚本。

向TA提问 私信TA
展开全部
最近正在用nltk 对中文网络商品评论进行褒贬雀键情感分类,计算顷激巧评论的信息熵(entropy)、互信息(point mutual information)和困惑值(perplexity)等(不过这些概念我其实也还理解不深...只是nltk 提供了相应方法)。

我感觉用nltk 处理中文是完全可用的。其重点在于中文分词和文本表达的形式。
中文和英文主要的不同之处是中文需要分词。因为nltk 的处理粒度一般是词,所以必须要先对文本进行分词然后再用nltk 来处理(不需要用nltk 来做分词,直接用分词包就可以了。严重推荐结巴分词,非常好用)。

文分词之后,文本就是一个由每个词组成的长数组:[word1, word2, word3…… wordn]。之后就可以使用nltk
里面的各种方法来处理这个文本了。比如用FreqDist 统计文本词频,用bigrams 把文本变成双词组的形式:[(word1, word2),
(word2, word3), (word3, word4)……(wordn-1, wordn)]。
再之后就可以用这些来计算文本词语的信息熵、互信息等。
再之后可以用这些来选择机器学习的特征,构建分类器,对文本进行分类(商品评论是由多个独立评论组成的多维数组,网上有很多情感分类的实现例子用的就是nltk 中的商品评论语料库,不过是英文的。但整个思想是可以一致的)。

另外还有一个困扰很多人的Python 中文编码问题。多次失败后我总结出一些经验。
Python 解决中文编码问题基本可以用以下逻辑:
utf8(铅让输入) ——> unicode(处理) ——> (输出)utf8
Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。

于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python
处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str()
函数就可以了)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式