无穷间断点的极限特征
展开全部
特征:当x趋向于x0时,f(x)趋向于无穷大,故x=x0为无穷间断点,而且只要左右极限中,任意一个极限等于无穷大,那么这个点就是无穷间断点。
如果左极限=右极限则为可去间断点,若不相等则为跳跃间断点;若左右极限中至少有一个为无穷大(不存在),则为无穷间断点,至于震荡间断点只有正弦函数余弦函数那种形式和一些周期函数(初等函数)。
定义
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。
(2)函数f(x)在点x0的左右极限中至少有一个不存在。
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询