如何通俗易懂地解释支持向量回归

 我来答
asdasd88999
推荐于2018-03-16 · TA获得超过3642个赞
知道大有可为答主
回答量:6294
采纳率:0%
帮助的人:1110万
展开全部
超级通俗的解释:
支持向量机是用来解决分类问题的。
先考虑最简单的情况,豌豆和米粒,用晒子很快可以分开,小颗粒漏下去,大颗粒保留。
用一个函数来表示就是当直径d大于某个值D,就判定为豌豆,小于某个值就是米粒。
d>D, 豌豆
d
在数轴上就是在d左边就是米粒,右边就是绿豆,这是一维的情况。
但是实际问题没这么简单,考虑的问题不单单是尺寸,一个花的两个品种,怎么分类?
假设决定他们分类的有两个属性,花瓣尺寸和颜色。单独用一个属性来分类,像刚才分米粒那样,就不行了。这个时候我们设置两个值 尺寸x和颜色y.
我们把所有的数据都丢到x-y平面上作为点,按道理如果只有这两个属性决定了两个品种,数据肯定会按两类聚集在这个二维平面上。
我们只要找到一条直线,把这两类划分开来,分类就很容易了,以后遇到一个数据,就丢进这个平面,看在直线的哪一边,就是哪一类。
比如x+y-2=0这条直线,我们把数据(x,y)代入,只要认为x+y-2>0的就是A类,x+y-2<0的就是B类。
以此类推,还有三维的,四维的,N维的 属性的分类,这样构造的也许就不是直线,而是平面,超平面。
一个三维的函数分类 :x+y+z-2=0,这就是个分类的平面了。
有时候,分类的那条线不一定是直线,还有可能是曲线,我们通过某些函数来转换,就可以转化成刚才的哪种多维的分类问题,这个就是核函数的思想。
例如:分类的函数是个圆形x^2+y^2-4=0。这个时候令x^2=a; y^2=b,还不就变成了a+b-4=0 这种直线问题了。
这就是支持向量机的思想。
机的意思就是 算法,机器学习领域里面常常用“机”这个字表示算法
支持向量意思就是 数据集种的某些点,位置比较特殊,比如刚才提到的x+y-2=0这条直线,直线上面区域x+y-2>0的全是A类,下面的x+y-2<0的全是B类,我们找这条直线的时候,一般就看聚集在一起的两类数据,他们各自的最边缘位置的点,也就是最靠近划分直线的那几个点,而其他点对这条直线的最终位置的确定起不了作用,所以我姑且叫这些点叫“支持点”(意思就是有用的点),但是在数学上,没这种说法,数学里的点,又可以叫向量,比如二维点(x,y)就是二维向量,三维度的就是三维向量( x,y,z)。所以 “支持点”改叫“支持向量”,听起来比较专业,NB。
所以就是 支持向量机 了。
博锐尚格
2021-07-20 · 百度认证:博锐尚格科技股份有限公司官方账号
博锐尚格
向TA提问
展开全部
回归就是根据已有数据,求出其中某些变量之间较为准确的数学关系表达式。
支持向量回归SVR(support vector regression)是使用一条带状区域来拟合曲线,基于拟合的曲线进行回归分析,也就是预测我们关心的变量的值。
支持向量回归假设我们能容忍的f(x)与y之间最多有ε的偏差,支持向量就是那些f(x)与y的差别绝对值大于等于ε的样本点,当且仅当f(x)与y的差别绝对值大于ε时,才可以计算损失。
需要注意的是,以f(x)为中心宽度为2ε的间隔带内部样本点的代价函数为0,所以参数ε越大,间隔带所包含的默认是正确的样本点就越多,支持向量数就越少,会导致模型过于简单、预测正确率偏低;而当参数ε越小,模型回归精度越高,会导致模型过于复杂,容易造成过拟合,同样也会降低回归正确率。因此设置合理的ε值,是模拟假设的重要工作。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式