矩阵满秩有什么性质
行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关,一个矩阵的行秩等于列秩,所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。
用初等行变换将矩阵A化为阶梯形矩阵,则矩阵中非零行的个数就定义为这个矩阵的秩,记为r(A),根据这个定义,矩阵的秩可以通过初等行变换求得。
需要注意的是,矩阵的阶梯形并不是唯一的,但是阶梯形中非零行的个数总是一致的。
单位阵资料:
单位阵是单位矩阵的简称,它指的是对角线上都是1,其余元素皆为0的矩阵。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。
可用将系数矩阵转化成单位矩阵的方法解线性方程组。
行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关,一个矩阵的行秩等于列秩,所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。
用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A),根据这个定义, 矩阵的秩可以通过初等行变换求得。
需要注意的是, 矩阵的阶梯形并不是唯一的, 但是阶梯形中非零行的个数总是一致的。
扩展资料:
设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。
若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
参考资料来源:百度百科——满秩矩阵
列满秩矩阵就是列向量线性无关
一个矩阵的行秩等于列秩,
所以如果是方阵,
行满秩矩阵与列满秩矩阵是等价的.