求高中数学学霸解答
1个回答
展开全部
(1)Sn=2ⁿ-1
an=Sn-Sn-₁= 2ⁿ-2ⁿˉ¹=2ⁿˉ¹
(2)bn=(2n-1)/2ⁿˉ¹
Tn=b₁+b₂+b₃+b₄+b₅+...+bn
即 Tn=1/2º+3/2¹+5/2²+7/2³+9/2⁴+...+(2n-1)/2ⁿˉ¹...............①
2Tn=2+3/2º+5/2¹+7/2²+9/2³++11/2⁴+...+(2n-1)/2ⁿˉ²........②
由②-①,得
Tn=2+2(1/2º+1/2¹+1/2²+1/2³++1/2⁴+...+1/2ⁿˉ²)-(2n-1)/2ⁿˉ¹
=2+2【1-(½)ⁿˉ¹】/(1-½)-(2n-1)/2ⁿˉ¹
=2+4【1-(½)ⁿˉ¹】-(2n-1)/2ⁿˉ¹
=6-(2n+3)/2ⁿˉ¹
an=Sn-Sn-₁= 2ⁿ-2ⁿˉ¹=2ⁿˉ¹
(2)bn=(2n-1)/2ⁿˉ¹
Tn=b₁+b₂+b₃+b₄+b₅+...+bn
即 Tn=1/2º+3/2¹+5/2²+7/2³+9/2⁴+...+(2n-1)/2ⁿˉ¹...............①
2Tn=2+3/2º+5/2¹+7/2²+9/2³++11/2⁴+...+(2n-1)/2ⁿˉ²........②
由②-①,得
Tn=2+2(1/2º+1/2¹+1/2²+1/2³++1/2⁴+...+1/2ⁿˉ²)-(2n-1)/2ⁿˉ¹
=2+2【1-(½)ⁿˉ¹】/(1-½)-(2n-1)/2ⁿˉ¹
=2+4【1-(½)ⁿˉ¹】-(2n-1)/2ⁿˉ¹
=6-(2n+3)/2ⁿˉ¹
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询