1个回答
展开全部
设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.│f(x)-A│Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A不但能证明极限存在,还可以求极限,主要用放缩法.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛.在运用它们去求函数的极限时尤需注意以下关键之点.一是先要用单调有界定理证明收敛,然后再求极限值.二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值.函数极限的方法①利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零.第二:若分母出现根号,可以配一个因子是根号去除.第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方.(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练.
追问
那这个题到底怎么做
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询