如图,在梯形ABCD中,AD‖BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG
DG是ABCD的高(1)求证:四边形AEFD是平行四边形(2)若四边形DEGF的面积为4√3,求AE的长...
DG是ABCD的高
(1)求证:四边形AEFD是平行四边形
(2)若四边形DEGF的面积为4√3,求AE的长 展开
(1)求证:四边形AEFD是平行四边形
(2)若四边形DEGF的面积为4√3,求AE的长 展开
3个回答
展开全部
证明:
(1)由AB=AD,AE⊥BD可知AE是等腰三角形ABD的高,
所以它也是等腰三角形ABD的中线。
再由F是CD的中点,可得
EF‖BC
再由AD‖BC,可得
EF‖AD ①
又因为∠C=60°
所以∠A=120°
所以∠ABD=30°
所以∠CBD=∠ABC-∠ABD = ∠C -∠ABD =60°-30°=30°
从而∠BDC=90°
再由∠AED=90°,可得
AE‖DF ②
综合①②就可证明四边形AEFD是平行四边形。
(2)
在上面的证明中,还可得到结论BC=2AD。
且也易求得梯形的高DG=(√3)AD/2
所以有
4√3=(AD+BC)•DG/2=[3AD•(√3)AD/2]/2=(3√3)AD²/4
由此可求得
AD=(4√3)/3
又因为在直角三角形ADE中,∠ADE=30°
所以AE=AD/2=(2√3)/3 完。
(1)由AB=AD,AE⊥BD可知AE是等腰三角形ABD的高,
所以它也是等腰三角形ABD的中线。
再由F是CD的中点,可得
EF‖BC
再由AD‖BC,可得
EF‖AD ①
又因为∠C=60°
所以∠A=120°
所以∠ABD=30°
所以∠CBD=∠ABC-∠ABD = ∠C -∠ABD =60°-30°=30°
从而∠BDC=90°
再由∠AED=90°,可得
AE‖DF ②
综合①②就可证明四边形AEFD是平行四边形。
(2)
在上面的证明中,还可得到结论BC=2AD。
且也易求得梯形的高DG=(√3)AD/2
所以有
4√3=(AD+BC)•DG/2=[3AD•(√3)AD/2]/2=(3√3)AD²/4
由此可求得
AD=(4√3)/3
又因为在直角三角形ADE中,∠ADE=30°
所以AE=AD/2=(2√3)/3 完。
展开全部
证明:(1)∵AB=DC,
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°.
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.
由AE⊥BD,
∴AE∥DC.
又∵AE为等腰三角形ABD的高,
∴E是BD的中点.
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)解:在Rt△AED中,∠ADB=30°,
∵AE=x,
∴AD=2x.
在Rt△DGC中∠C=60°,且DC=AD=2x,
∴DG=√3 x.
由(1)知:在平行四边形AEFD中:EF=AD=2x,
又∵DG⊥BC,
∴DG⊥EF.
∴四边形DEGF的面积= EF•DG.
∴y=½ ×2x• √3x= √3x²(x>0).
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°.
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.
由AE⊥BD,
∴AE∥DC.
又∵AE为等腰三角形ABD的高,
∴E是BD的中点.
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)解:在Rt△AED中,∠ADB=30°,
∵AE=x,
∴AD=2x.
在Rt△DGC中∠C=60°,且DC=AD=2x,
∴DG=√3 x.
由(1)知:在平行四边形AEFD中:EF=AD=2x,
又∵DG⊥BC,
∴DG⊥EF.
∴四边形DEGF的面积= EF•DG.
∴y=½ ×2x• √3x= √3x²(x>0).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
WDS百度地图
本数据来源于百度地图,最终结果以百度地图最新数据为准。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询