柯西积分公式是一把钥匙,他开启了许多方法与定理;他刻画了解析函数的又一种定义;人们对它的研究极具意义,让解析函数论能够单独脱离于实函数。
柯西积分公式的基本内容是这样叙述的:若函数f(z)在简单正向闭曲线C所围成的区域D内解析,在区域D的边界C上连续,z0 是区域D内任意一点,则有柯西积分公式。
柯西积分公式对于无界区域也成立:如果无界区域 D(包含∞在内, D的边界是有限条简单闭曲线C,函数在内除了点∞外是解析的。
(其中C的方向取负方向,ζ是一个记号,仅为了与z区分)。
柯西积分公式说明:如果一个函数在简单闭合曲线C的内部解析,在C上连续,则函数在C内部的值完全可由C上的值而定。