如何培养小学数学一题多解思维的

 我来答
wxmao88
2017-04-10 · 知道合伙人教育行家
wxmao88
知道合伙人教育行家
采纳数:29716 获赞数:532722
截止目前,采纳数达到2.9万,采纳率达97%,已升至19级。

向TA提问 私信TA
展开全部
一题多解,就是启发和引导学生从不同角度、不同思路,不同的方位,运用不同的方法和不同的运算过程,解答同一道数学问题。教学中适当的一题多解,可以激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。
一题多解对于五、六年级学生来说尤为重要,我们每位小学教师必须引为重视,搞好训练。
下面仅就多步应用题教学过程中的一题多解,初略地介绍一下基本做法:
一、进行一题多解的实际练习。
在实际教学中,一般采用以下两种方法:
1.一般的一题多解的练习。题目是由浅入深,由易到难。解法、时间、速度等要求逐步提高。
题1南北两城的铁路长 357公里,一列快车从北城开出,同时有一列慢车从南城开出,两车相向而行,经过3小时相遇,快车平均每小时行79公里,慢车平均每小时比快车少行多少公里?
解法1 、[357-(79×3)]÷3
=[357-237]÷3
=120÷3
=40(公里)
即慢车平均每小时行40公里,
已知快车平均每小时行79公里,
∴慢车平均每小时比快车少行多少公里就是
79-40=39(公里)
答:慢车平均每小时比快车少行39公里。
解法2、 79-(357÷3-79)
=79-(119-79)
=79-40
=39(公里)
答:(同上)
解法3 、设慢车平均每小时行x公里
79×3+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
……
2.看谁的解法多。我们知道,一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。所以,在实际训练中,我们不能满足于学生会用几种一般的方法来分析解答应用题。如果只以一般的几种解法为满足,对学生通过多向思维求得的其他解法特别是一些较为复杂的解法不提倡,不鼓励,这样就会挫伤学生思维的积极性,影响学生的学习兴趣,不利于培养学生的创造能力。实践证明,学生的解法越多,表明学生的思维越灵活,思路越开阔。学生能够根据题意和数量关系,运用所学习和掌握的知识不拘泥、不守旧,乐于打破一般的框框去进行广阔的思维,十分用心地去探求各种解题方法,就越有利于促进其思维的发展,提高创造能力。我们就越应当给予肯定和鼓励。对于学生“别出心裁”、“独辟蹊径”的解题方法,要给以表扬和鼓励。这对激发学生的学习兴趣,调动一题多解的积极性是很有好处的。
例如:上面的题1,除了那三种解法之外,学生还想出以下十几种解法:
解法4、 设慢车平均每小时行x公里
(79+x)×3=357
237+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
解法5 、设慢车平均每小时行x公里
3x=357-79×3
解法6 、设慢车平均每小时行x公里
357-3x=79×3
解法7 、设慢车平均每小时行x公里
79+x=357÷3
解法8 、设慢车平均每小时行x公里
357÷3-x=79
解法9、 设慢车平均每小时比快车少行x公里
(79-x)×3+79×3=357
解法10 、设慢车平均每小时比快车少行x公里
(79-x+79)×3=357
解法11、 设慢车平均每小时比快车少行x公里
(79-x)×3=357-79×3
解法12、 设慢车平均每小时比快车少行x公里
357-(79-x)×3=79×3
解法13 、设慢车平均每小时比快车少行x公里
79+(79-x)=357÷3
解法14、 设慢车平均每小时比快车少行x公里
357÷3-(79-x)=79
解法15、 设慢车平均每小时比快车少行x公里
79-x=357÷3-79
一道应用题,学生能够想出这么多的解法,表明学生的思路很开阔,思维很灵活。智力发达的同学争先恐后,智力较差的同学也积极动脑。全班同学都进入积极的思维状态,互相启发,不甘落后,课堂气氛很活跃,学生的学习积极性都可以调动起来。
二、口述不同的解题思路和解题方法。
口述不同的解题思路和解题方法,就是只要求学生说出不同的(或叫新的)解题思路和解题方法,不用具体解答。它是进行一题多解实际练习的另一种形式。这种练习和前一种练习所不同的地方是:前一种练习偏重于学生动脑动手,进行一题多解的实际练习;这种练习偏重于学生动脑动口,寻求新的解题思路和不同的解题方法。简言之,前者是动脑动手,后者是动脑动口。进行这种训练,主要是为了使学生在单位时间内更多地、更好地认识和掌握应用题的多种解法,提高一题多解训练的课堂教学效率。
在实际教学中,这种练习一般是采取全班和分组两种形式交错进行。开始,全班同学一起,分别对某一道应用题口述不同的解题思路和解题方法,一人一次口述一种。然后分组进行,便于增加学生口述的机会,达到人人动脑,人人口述。这种练习的基本过程是:先全班后小组再全班。这样交错进行。好、差学生都有口述机会,达到共同提高的目的。
例: 两地相距383公里,甲乙两人从两地相向而行,甲先走1天,一共走5天才和乙相遇,已知每天甲比乙多走10公里,问甲乙两人每天各走多少公里?
口述1:甲走5天,乙仅走5-1=4(天)。假如甲每天比原来少行10公里,则与乙的速度相等。那么甲行5天,乙行4天,就相当于乙行5+4=9(天),这时两人还相距10×5=50(公里)。乙9天共行383-50=333(公里),乙每天走的就可以求出来了。乙每天走多少公里知道了,甲每天走的也就可以知道了。
口述2:甲行5天,乙行4天,假如乙每天比原来多行10公里,则与甲的速度相等。那么甲行5天,乙行4天,就相当于甲行5+4=9(天),这样两人所走的路程的和就要多出10×4=40(公里)。即甲9天共行383+40=423(公里),所以甲每天走的就可以求出来了。甲每天走的知道了,乙每天走的也就可以知道了。
口述3:除上述两种方法外,本题还可以用列方程来解。设甲每天行x公里,那么乙每天行的就是(x-10)公里,已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
5x+4×(x-10)=383
解方程,就可以求出甲每天行多少公里,甲每天行的求出来了,乙每天行的也就可以求出来了。
本题也可以设乙每天行x公里,则甲每天行的就是(x+10)公里。已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
(x+10)×5+4x=383
解方程,就可以求出乙每天行多少公里,乙每天行的求出来了,甲每天行的也就可以求出来了。
实践证明,口述不同的解题思路和解题方法,不仅可以促使学生积极动脑,努力探求应用题的多种解法,培养和锻炼学生的逻辑思维能力和语言表达能力,而且可以帮助学生在较短的时间内把应用题的多种不同解法都挖掘出来,这对学生更好地认识和掌握应用题的各种解法,提高分析解答应用题的能力和效率等都有重要作用。
三、引导学生自己找出最简便的解法。
引导学生自己找出最简便的解法,就是在上面两步练习的基础上,在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在分析比较,相互讨论、相互争论的过程中,找出最简便的解题方法。这一过程,就是一个继续思维的过程,也是一个对应用题的各种解法的再认识的过程。它是一题多解训练的一个不可忽视的环节。学生通过前面两步的训练,求得应用题的多种解法之后,解题思维不能到此完结,对各种解题方法的认识也不是非常深刻。学生求得的几种解题方法是否完全正确,分析解题的过程是否都很恰当,哪些是一般的解法,哪些是自己的创新,哪种解法简便等等,这些都要引导学生自己去进一步思维,进一步去认识。否则是对是错,是优是劣,是简是繁,学生都不知道,这样就不能达到提高学生解题能力的目的。只有通过引导学生自己对上述求得的各种解题方法进行逐一比较,展开热烈的讨论或争论,才能真正把握应用题的最简便的解题方法,才能进一步提高解答应用题的能力和效率。
例: 幸福小学原计划买12个篮球,每个72元,从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?
解法1 、(72×12--432)÷72
=432÷72
=6(个)
答:剩下的钱还可以买6个篮球。
解法2、 12-432÷72
=12-6
=6(个)
答:(同上)
解法3 、设剩下的钱还可以买x个篮球
72x=12×72-432
72x=432
x=6
答:(同上)
解法4、 设剩下的钱还可以买x个篮球
72x+432=72×12
72x+432=864
72x=864-432
72x=432
x=6
答:(同上)
本题上述多种解法,思维分析过程不同,解法和运算过程也不同。解法1是一般的思维和一般的算术解法;解法3,4……是列方程的解法。解法2也是算术解法,但解题思路新,解答方法、解题过程简便。
当一个学生说出这个解题思路:“把拿出432元买足球的钱看作是少买了几个篮球的钱,再用计划买的12个篮球数减掉少买的篮球数所得的差,就是所求的答案。” 列出:12-432÷72这个式子,可以看出这位同学的解题思路独特又有新意,解题方法简便,解题过程简单。
实践证明,进行这种训练,让学生在比较、讨论、争论中,找出最简便的解法和独特的富有新意的解题思路,有利于加深学生对多种解题方法的认识,从而更熟练地把握应用题的多种分析解题方法。
一题多解训练,应当注意以下几点:
(1)目的要明确。上这种课,不是单纯地追求一题多解,而是要通过这种练习活动,达到锻炼学生的思维,拓宽学生的思路,增长学生的知识,培养和提高学生创造性学习能力这个根本目的。所以,教学内容的安排,教学活动的组织,教学方法的选择等等,都要有利于实现这个根本目的。这是上这种课的总要求。
(2)要注意把握上这种课的时间。这种课必须要在学生对有关的知识和技能熟练掌握的基础上进行。如果学生对有关的知识和技能没有熟练掌握,就谈不上灵活运用,就谈不上纵向、横向联系,也就不能进行一题多解。所以,上这种课,一般是在学生对某一部分知识或某几部分知识熟练掌握的时候,在综合练习时进行。学生对基础知识掌握得越深刻,越透彻;基本技能越娴熟,越灵活,就越能够进行一题多解,上这种课就越能收到好的效果。
(3)选题要得当,方法要灵活。选题得当是学生一题多解的前提条件。它既要能够一题多解,又要顾及班上差生、好生的具体情况,使差生想想也能找出几种解法,使好生也有用武之地;一题多解训练的具体方式方法是很多的,不能死搬硬套,人云亦云。要从实际出发,不能千题一律,堂堂如此。要根据班上学生学习的具体情况和实际教学需要,灵活选择教学方法。只有这样,才能调动全班学生的学习积极性,取得好的教学效果。
江苏知嘛
2019-10-28 · 百度认证:江苏知嘛网络科技有限公司官方账号
江苏知嘛
“何秋光学前数学”是“知嘛网络科技”联袂中国学前数学思维训练 创始人-何秋光合力打造的在线教育平台。
向TA提问
展开全部
一、 一题多解拓宽学生的思维面
在小学数学教学中让学生运用一题多解的方式进行学习,教师要引导学生从不同的角度对问题进行分析和思考,摆脱定势思维的影响和束缚,找出不同的解决方法。在一题多解教学中,激发学生的好胜心,让他们利用已有知识进行充分探究,找到不同的解决方法。在解题过程中,学生的思维不断深入,让他们从已有的知识中选择有用的信息,顺利解决问题。在数学教学中,教师要加强对学生思维能力的训练,提高学生的思维灵敏性,拓宽他们的思维面,促进数学综合能力的发展。
二、一题多解培养学生的创设思维能力
随着素质教育的进行,小学生成为了课堂学习的主体,在教学过程中,教师要根据他们的学习情况进行教学设计,发挥学生的学习主动性,让他们通过积极的思考和分析掌握所学知识,并能用掌握的知识分析和解决问题。在教学改革的进程中,教师要实现高效的课堂教学效率,在激发学生学习兴趣的同时,还要培养他们的创新思维能力。因此,在教学过程中,教师可以采用一题多解的方式来对学生进行思维训练,让他们在用知识的过程中提高思维的灵敏性,加深对知识的理解,能够灵活运用知识分析问题,从多个角度探究问题,找到解决问题的多种方法。在一题多解过程中,学生的创造力得到了充分发挥,他们在学习中能够举一反三,有效提高数学学习能力,促使他们的数学综合素质获得发展,实现高效的课堂教学。
三、一题多解促进学生的发散思维
在小学数学教学中进行一题多解的思维训练,有助于促进学生发散思维的发展,让他们对题目进行全面分析,从题干中找出有用信息,提高他们的审题能力和解题能力,大大提高学习效率。在进行一题多解的训练时,教师要给学生充足的思考和探究时间,让他们能对问题进行深入分析,从不同的角度找到解决问题的切入点,用多种方法解决问题,促进他们发散思维的发展。在数学教学过程中,教师在引导学生分析问题时,要让他们从各个角度进行大胆尝试,利用知识之间的联系进行分析和思考,通过联想、比较找到解决问题的方法。在培养学生的发散思维时,运用一题多解的方式能够让学生的思维变通性得到发展,让他们的数学思维摆脱定势思维的束缚,促进思维灵活性的发展。
四、一题多解发展学生的思维灵活性
在一题多解的思维训练中,教师可以组织学生进行比赛,给出学生数学题目后,让他们发挥自己的思维创造性和灵活性,尽可能多的找出解决问题的方法。在比赛过程中,充分激发了学生的好胜心,使他们对学到的知识进行梳理,从中找出解决问题所需的知识,让他们顺利解决题目。在进行比赛时,学生会从多个角度对问题进行分析,在找出的解决方法中,有一些简便方法,还有一些较为复杂的方法。在对这些方法进行评价时,教师要对学生想出来的所有方法进行表扬和鼓励,让他们在感受学习成就感的同时,促进思维的灵活性。在一题多解的训练中,学生想出的方法越多,他们的思维越开阔,越有利于促进其思维灵活性的发展。因此,比赛过程中,只要学生的解题方法正确,教师都要给予表扬,尤其是对学生独特的解题方法进行表扬,激发他们的思维活跃性,让他们能深入分析数学题目,根据题干信息进行解决,促进他们分析问题、解决问题能力的有效提高。在比赛过程中完成一题多解的训练,能让课堂教学摆脱枯燥的教学方式,充分激发学生的参与兴趣,让他们在比赛中向自我挑战,在积极思考的过程中获得不断提高,实现高效的课堂教学效率。
总之,在小学数学教学中,教师要注重培养学生的创新思维能力和发散思维能力,让他们通过一题多解的方式进行探究,促进他们数学思维的深入发展,让他们能灵活运用所学知识解决问题,通过分析、比较、思考找出多种解决问题的方法,提高他们运用知识解决问题的能力,让学生的数学思维获得发展,实现高效的学习效率。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式