急求急求,这道题应该怎么做呢?有没有什么简便方法呢?
1个回答
展开全部
1/1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+...+100)=
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
第n项的分母是自然数之和(n+1)*n/2
所以:
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
=1+2/(2*3)+2/(3*4)+2/(4*5)+...+2/(100*101)
=1+2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/100-1/101)
=1+2*(1/2-1/101)
=1+1-2/101
=2-2/101
=200/101
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
第n项的分母是自然数之和(n+1)*n/2
所以:
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+100)
=1+2/(2*3)+2/(3*4)+2/(4*5)+...+2/(100*101)
=1+2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/100-1/101)
=1+2*(1/2-1/101)
=1+1-2/101
=2-2/101
=200/101
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询