高中常用三角函数值表内容是什么?
特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:
扩展资料
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
三角函数值表通常包含以下内容:
1. 角度值:常用的角度值包括 0°、30°、45°、60° 和 90°,以及它们的整数倍和相关补角。这些角度值是常用的特殊角,对应于简单的三角函数值。
2. 弧度值:三角函数在数学中通常使用弧度进行计算。常用弧度值包括 0,π/6,π/4,π/3,π/2 等特殊弧度值,对应于简单的三角函数值。
3. 正弦值(sin):表示角的对边与斜边的比值。
4. 余弦值(cos):表示角的邻边与斜边的比值。
5. 正切值(tan):表示角的对边与邻边的比值。
6. 割值(sec):表示角的斜边与邻边的比值的倒数。
7. 余割值(csc):表示角的斜边与对边的比值的倒数。
8. 弧度制下的三角函数值:三角函数值也可以用弧度制进行计算和表示。
其中,0°、30°、45°、60° 和 90° 这几个特殊角的三角函数值是非常常用的,因为它们较为容易计算和记忆。
注意:当涉及特殊角的三角函数值表时,通常会给出近似值或精确值。具体要看教材或参考资料中的表格内容。
以下是一个典型的三角函数值表的示例:
角度(度) 正弦值(sin) 余弦值(cos) 正切值(tan)
0 0 1 0
30 1/2 √3/2 √3/3
45 √2/2 √2/2 1
60 √3/2 1/2 √3
90 1 0 无穷大
请注意,这只是示例中的一小部分三角函数值,实际使用的三角函数值表可能会更加详细和完整。希望这个示例能帮助到您!
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
Tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
这些公式是高中阶段常用的三角函数变换公式,对于学习和掌握三角函数的相关知识非常重要。
1. 正弦函数(sin):它表示一个角的对边与斜边之比,其取值范围在-1到1之间。
角度:0° 30° 45° 60° 90°
正弦值:0 1/2 √2/2 √3/2 1
2.余弦函数(cos):它表示一个角的邻边与斜边之比,其取值范围也在-1到1之间。
角度:0° 30° 45° 60° 90°
正弦值: √3/2 √2/2
3.正切函数(tan): 它表示一个角的对边与邻边之比,其取值可以是任意实数