求助一道三角函数级数敛散性的问题,求大神帮

 我来答
一刀见笑8
推荐于2017-07-08 · TA获得超过4.9万个赞
知道大有可为答主
回答量:1.9万
采纳率:80%
帮助的人:1673万
展开全部
原级数是条件收敛。

首先,根据莱布尼茨判别法,∑(n=1到∞)(-1)^(n-1)*(1/ln(n+1))是交错级数,且1/ln(n+1)单调递减趋于0,所以∑(n=1到∞)(-1)^(n-1)*(1/ln(n+1))收敛。

齐次原级数通项的绝对值是1/ln(n+1),因为n足够大时,1/ln(n+1) > 1/n,而∑(n=1到∞)1/n发散,所以绝对值的级数发散。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式