用字母表示所有的运算定律
运算定律:
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、减法结合律:a-(b-c)=a-b+c;a-(b+c)=a-b-c
4、乘法交换律:a×b=b×a
5、乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
6、乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
7、乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
8、商不变性质:a÷b÷c=a÷(b×c)=a÷c÷b;a÷b×c=a÷(b÷c)
在运算方面上的一系列定律,统称为运算定律,可以使计算更简便。
扩展资料:
运算定律的意义:
加法:将两个或者两个以上的数、量合并成一个数、量的计算叫加法。
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
减法:从一个数量中减去另一个数量的运算叫做减法。
减法结合律:一个数连续减去两个数,可以先把后两个数相加,再相减。减去一个数,等于加这个数的相反数。减去一个数再加上一个数,等于减去这两个数的差。
乘法:求几个相同加数的和的简便运算叫做乘法。
乘法交换律:两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。
分配律:分配律是乘法运算的一种简便运算,可用于分数、小数中。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
参考资料:百度百科-运算定律
加法交换律的概念为:两个加数交换位置,和不变。
字母公式:A+B=B+A
题例(简算过程):6+18+4
=6+4+18
=10+18
=28
加法结合律
加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:(A+B)+C=A+(B+C)
题例(简算过程):6+18+2
=6+(18+2)
=6+20
=26
[编辑本段]乘法运算定律
乘法交换律
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:A×B=B×A
题例(简算过程):125×12×8
=125×8×12
=1000×12
=12000
乘法结合律
乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:(A×B)×C=A×(B×C)
题例(简算过程):30×25×4
=30×(25×4)
=30×100
=3000
乘法分配律
乘法分配律的概念为:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(A+B)×C=A×C+B×C
题例(简算过程):(1)12×6.2+3.8×12 (2)20.1×10
=12×(6.2+3.8) =(20+0.1)×10
=12×10 =20×10+0.1×10
=120 =200+1
=201
[编辑本段]减法性质
减法性质的概念为:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A-B-C=A-(B+C)
题例(简算过程):20-8-2
=20-(8+2)
=20-10
=10
差不变的规律
字母公式:A-B-C=A-(B+C)
题例:6-1.99
= 6X100-1.99X100
= 600-199
= 401
[编辑本段]除法性质
除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:A÷B÷C=A÷(B×C)
题例(简算过程):20÷8÷1.25
=20÷(8×1.25)
=20÷10
=2
[编辑本段]小数的基本性质
小数的基本性质:小数的末尾添上“0”或去掉“0”,数的大小不变。
运算定律:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
减法结合律:a-(b-c)=a-b+c;a-(b+c)=a-b-c
商不变性质:a÷b÷c=a÷(b×c)=a÷c÷b;a÷b×c=a÷(b÷c)
在运算方面上的一系列定律,统称为运算定律,可以使计算更简便。