
求不定积分(x^3+x−1)/(x^2+2)^2
2个回答
展开全部
被积函数 f(x) = (x^3+x−1)/(x^2+2)^2 = (x^3+2x-x−1)/(x^2+2)^2
= x/(x^2+2) - x/(x^2+2)^2 − 1/(x^2+2)^2
I1 = ∫xdx/(x^2+2) = (1/2)∫d(x^2+2)/(x^2+2) = (1/2)ln(x^2+2) + C1,
I2 = ∫xdx/(x^2+2)^2 = (1/2)∫d(x^2+2)/(x^2+2)^2 = -(1/2)/(x^2+2) + C2
I3 = ∫ dx/(x^2+2)^2 (令 x = √2tant)
= ∫ dx/(x^2+2)^2 = (√2/4)∫ dt/(sect)^2 = (√2/4)∫ (cost)^2dt
= (√2/8)∫ (1-cos2t)dt = (√2/8)[t-(1/2)sin2t] + C3
= (√2/8)[t-sintcost] + C3 = (√2/8)[arctan(x/√2)-√2x/(x^2+2)] + C3
I = I1 - I2 - I3 = (1/2)ln(x^2+2) + (1/2)/(x^2+2) - (√2/8)[arctan(x/√2)-√2x/(x^2+2)] + C
= x/(x^2+2) - x/(x^2+2)^2 − 1/(x^2+2)^2
I1 = ∫xdx/(x^2+2) = (1/2)∫d(x^2+2)/(x^2+2) = (1/2)ln(x^2+2) + C1,
I2 = ∫xdx/(x^2+2)^2 = (1/2)∫d(x^2+2)/(x^2+2)^2 = -(1/2)/(x^2+2) + C2
I3 = ∫ dx/(x^2+2)^2 (令 x = √2tant)
= ∫ dx/(x^2+2)^2 = (√2/4)∫ dt/(sect)^2 = (√2/4)∫ (cost)^2dt
= (√2/8)∫ (1-cos2t)dt = (√2/8)[t-(1/2)sin2t] + C3
= (√2/8)[t-sintcost] + C3 = (√2/8)[arctan(x/√2)-√2x/(x^2+2)] + C3
I = I1 - I2 - I3 = (1/2)ln(x^2+2) + (1/2)/(x^2+2) - (√2/8)[arctan(x/√2)-√2x/(x^2+2)] + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询