存在,偏导连续,可微,连续之间有什么联系

 我来答
远宏012
高粉答主

2020-07-06 · 说的都是干货,快来关注
知道小有建树答主
回答量:474
采纳率:100%
帮助的人:6.9万
展开全部

偏导数存在且连续(这个连续指的是求完偏导的函数)=>可微,反之推不出;

可微=>偏导数存在,反之推不出;

可微=>连续(这个连续指的是没求偏导的函数),反之推不出;

可微=>方向导数存在,反之推不出;

偏导数存在,连续,方向导数存在之间互相谁也推不出谁。

扩展资料:

连续与一个自变量的含义是同样的,偏导数是只对一个自变量求导,就是把函数限制在x轴或y轴上(相当于看成单变元函数了)看函数是否是可导的。

比如对x求偏导,就是考虑函数只有x变化时的情况,此时y就是常数。可微是从几何角度考虑的,就是对一个函数图像而言,能否找一个平面图像近似这个函数图像,当然要求近似程度要高(就是误差是自变量该变量的高阶无穷小),能的话就是可微。

鲨鱼星小游戏
高粉答主

2021-06-06 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238393

向TA提问 私信TA
展开全部

偏导数存在且连续(这个连续指的是求完偏导的函数)=>可微,反之推不出;

可微=>偏导数存在,反之推不出;

可微=>连续(这个连续指的是没求偏导的函数),反之推不出;

可微=>方向导数存在,反之推不出;

偏导数存在,连续,方向导数存在之间互相谁也推不出谁。

可导与偏导:

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bill8341
高粉答主

2017-12-30 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3624万
展开全部
偏导数存在且连续(这个连续指的是求完偏导的函数)=>可微,反之推不出;
可微=>偏导数存在,反之推不出;
可微=>连续(这个连续指的是没求偏导的函数),反之推不出;
可微=>方向导数存在,反之推不出;
偏导数存在,连续,方向导数存在之间互相谁也推不出谁.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
社畜垃圾桶
2019-07-06 · TA获得超过506个赞
知道小有建树答主
回答量:288
采纳率:76%
帮助的人:27.2万
展开全部


教材是同济大学版的
给个赞吧😃

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
润泽且甜美的小熊1
高粉答主

2020-02-22 · 醉心答题,欢迎关注
知道答主
回答量:5.9万
采纳率:1%
帮助的人:3086万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式