请问一下,极限存在,函数在该点处有定义吗
4个回答
展开全部
不一定有定义。
情况一,无定义情况举例:分段函数,分段点函数极限存在但分段点有两个值,所以无定义。
情况二,有定义情况举例:常数函数,函数极限就是常数,每一点都有定义。
综上所述有没有定义不是绝对的。
扩展资料
某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化;
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
展开全部
不一定有定义。
情况一,无定义情况举例:分段函数,分段点函数极限存在但分段点有两个值,所以无定义。
情况二,有定义情况举例:常数函数,函数极限就是常数,每一点都有定义。
综上所述有没有定义不是绝对的,所以选c,可有可无
情况一,无定义情况举例:分段函数,分段点函数极限存在但分段点有两个值,所以无定义。
情况二,有定义情况举例:常数函数,函数极限就是常数,每一点都有定义。
综上所述有没有定义不是绝对的,所以选c,可有可无
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
应当可有可无吧。
例如: y=sin(x)/x 在 x=0 处, 0/0 状态, 你说有定义还是无定义?
但它的极限存在。
(注意 y=x/sin(x) 在 x=0 处, 0/0 状态, 极限 不 存在。)
例如: y=sin(x)/x 在 x=0 处, 0/0 状态, 你说有定义还是无定义?
但它的极限存在。
(注意 y=x/sin(x) 在 x=0 处, 0/0 状态, 极限 不 存在。)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有定义极限存在则连续,无定义极限存在则可去间断点,第一类间断点包括可去间断点和跳跃间断点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询