求下列不定积分,谢谢
1个回答
展开全部
(1) 原式 = ∫ [(√x)^2-√x+1]dx = ∫ (x-√x+1)dx = x^2/2 - (2/3)x^(3/2) + x + C.
(2) 令 u = x^(1/4), 则 x = u^4, dx = 4u^3du,
原式 = ∫4u^3du/(u^2+u) = 4∫u^2du/(u+1) = 4∫(u^2+u-u-1+1)du/(u+1)
= 4∫[u-1+1/(u+1)]du = 4[u^2/2 - u + ln|1+u|] + C
= 2√x - 4x^(1/4) + 4ln[1+x^(1/4)] + C
(2) 令 u = x^(1/4), 则 x = u^4, dx = 4u^3du,
原式 = ∫4u^3du/(u^2+u) = 4∫u^2du/(u+1) = 4∫(u^2+u-u-1+1)du/(u+1)
= 4∫[u-1+1/(u+1)]du = 4[u^2/2 - u + ln|1+u|] + C
= 2√x - 4x^(1/4) + 4ln[1+x^(1/4)] + C
更多追问追答
追问
请问第一题根号怎样
怎样有理化
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询