x趋向于无穷,x-lnx的极限

 我来答
帐号已注销
2019-04-14 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:176万
展开全部

x趋向于无穷,x-lnx为无穷大。

设y=x-lnx-x/2=x/2-lnx。

则y'=1/2-1/x,所以当x>2时,y单调递增

显然当x=e时y>0,所以当x>e时,x-lnx-x/2>0。

即x-lnx>x/2。

而当x-->+无穷大时,x/2-->+无穷大,故有x-lnx-->+无穷大。

扩展资料:

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

梦色十年
高粉答主

2019-07-18 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:97.2万
展开全部

x趋向于无穷,x-lnx为无穷大

设y=x-lnx-x/2=x/2-lnx。

则y'=1/2-1/x,所以当x>2时,y单调递增

显然当x=e时y>0,所以当x>e时,x-lnx-x/2>0。

即x-lnx>x/2。

而当x-->+无穷大时,x/2-->+无穷大,故有x-lnx-->+无穷大。

扩展资料:

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
最爱方法水电费cz
2018-03-12 · TA获得超过1277个赞
知道小有建树答主
回答量:1594
采纳率:28%
帮助的人:99.3万
展开全部
求极限:x→0⁺lim(lnx-ax),x→+∞lim(lnx-ax),
(1)。x→0⁺lim(lnx-ax)=-∞
(2)。x→+∞lim(lnx-ax)=x→+∞lim[1/(1/lnx)-a/(1/x)]
=x→+∞lim[(1/x)-(a/lnx)]/(1/xlnx)【0/0型,用洛必达法则】
=x→+∞lim[(-1/x²)-ax]/[-(lnx+1)/x²ln²x]
=x→+∞lim[(1+ax³)ln²x]/(1+lnx)【∞/∞型,继续用洛必达法则】
=x→+∞lim[(3ax²ln²x+2(1+ax³)(lnx)/x]/(1/x)
=x→+∞lim[(3ax³ln²x+2(1+ax³)lnx]=±∞
当a≧0时为+∞;当a<0时取-∞;
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式