高斯的小故事

高斯的小故事... 高斯的小故事 展开
 我来答
zzxybd
2021-08-29
知道答主
回答量:42
采纳率:100%
帮助的人:1.1万
展开全部
约翰·卡尔·弗里德里希·高斯
约翰·卡尔·弗里德里希·高斯(德语:Johann Carl Friedrich Gauß;  ,英语:Gauss,拉丁语:Carolus Fridericus Gauss,1777年4月30日—1855年2月23日),德国著名数学家、物理学家、天文学家、几何学家,大地测量学家,毕业于Carolinum学院(现布伦瑞克工业大学)。[1]
高斯生于不伦瑞克。1796年,高斯证明了可以尺规作正十七边形。1807年高斯成为哥廷根大学教授和哥廷根天文台台长。1818年—1826年间,汉诺威公国的大地测量工作由高斯主导。1840年高斯与韦伯一同画出世界上第一张地球磁场图。[1]
高斯被认为是世界上最重要的数学家之一,享有“数学王子”的美誉。[1]
中文名
约翰·卡尔·弗里德里希·高斯
外文名
Johann Carl Friedrich Gauß;
别名
高斯
国籍
德国
出生日期
1777年4月30日
相关课程
你不知道的数学王子—高斯
去学习
世界三大数学家
共3个词条
阿基米德
约翰·卡尔·弗里德里希·高斯
艾萨克·牛顿
国内外知名数学家
共7个词条
齐民友
曾任武汉大学校长
周毓麟
获苏步青应用数学奖特别奖
伊萨多·辛格
提出阿蒂亚-辛格指数定理
葛立恒
获得斯蒂尔终身成就奖
快速
导航
主要成就轶事典故家庭成员后世纪念
人物生平
早年生活
高斯于1777年4月30日出生于不伦瑞克。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。他曾说,他能够在脑袋中进行复杂的计算。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。[1]
天赋异禀
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的证明了正十七边形可以用尺规作图。[1]
婚姻生活
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子乔瑟夫。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。[1]
教授台长
1807年高斯成为哥廷根大学的教授和当地天文台的台长。[1]
人物逝世
高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen(1811-1896)、Wilhelm(1813-1883)和 Therese(1816-1864)。 1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。[1]
主要成就
17岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
次年,证明出仅用尺规便可以构造出17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。
谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”(Ceres)对它命名,称为谷神星(Planetoiden Ceres),并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。
为了获知每年复活节的日期,高斯推导了复活节日期的计算公式。
1818年至1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。
高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论仍有应用的价值。
汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点的大地坐标。
为了用椭圆在球面上的正形投影理论解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影理论的研究,这项成果成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。
高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken——Thuringer Wald的Inselsberg——哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在。高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基用德文写了《平行线理论的几何研究》一文。这篇论文的发表引起了高斯的注意。他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。高斯最终成为微分几何的始祖(高斯、雅诺斯和罗巴切夫斯基)之一。
出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。
19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界第一个电话电报系统。尽管线路才8千米长。
1840年,他和韦伯画出了世界第一张地球磁场图,并且次年,这些位置得到美国科学家的证实。
高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。[1]
轶事典故
三岁纠错
高斯三岁时便能够纠正他父亲的借债账目。[1]
快速求和
用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。[1]
家庭成员
高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。[1]
后世纪念
学校方面
下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。[1]
钱币方面
高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。
wei042
高粉答主

2017-12-03 · 答你所问,追求质量,追求满意
wei042
采纳数:38061 获赞数:473513

向TA提问 私信TA
展开全部
、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?

这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”

老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050

2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6ef3732
2012-12-15 · TA获得超过192个赞
知道答主
回答量:72
采纳率:0%
帮助的人:10.6万
展开全部
高斯最著名的故事莫过于小学时计算1+2+3+...+100的值。当时高斯上小学,老师在班上出了这样一道题,叫大家算。那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。
还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
济金影戏行剑G
2011-02-26 · TA获得超过8885个赞
知道小有建树答主
回答量:801
采纳率:0%
帮助的人:0
展开全部
高斯最著名的故事莫过于小学时计算1+2+3+...+100的值。当时高斯上小学,老师在班上出了这样一道题,叫大家算。那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。
还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-03-12
展开全部
小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=?
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。

原来:1+100=101,2+99=101,3+98=101……50+51=101

前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。

按:今用公式表示:1+2+……+n 回答者: sherry19981014 | 四级 | 2011-2-26 21:35

百度百科 就有很多啊 很全
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式