数学题,如图,所示
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
∫(2x+3)/(x^2+2x+3)dx
=∫[(2x+2)/(x^2+2x+3)+1/(x^2+2x+3)]dx
=∫(2x+2)/(x^2+2x+3)dx+∫1/(x^2+2x+3)dx
=∫1/(x^2+2x+3)d(x^2+2x+3)+∫1/[2+(x+1)^2]dx
=ln(x^2+2x+3)+∫1/[(√ 2)^2+(x+1)^2]dx
=ln(x^2+2x+3)+1/√ 2∫1/{1+[(x+1)/√ 2]^2}dx
=ln(x^2+2x+3)+1/√ 2*arctan(x+1)/√ 2+C
=∫[(2x+2)/(x^2+2x+3)+1/(x^2+2x+3)]dx
=∫(2x+2)/(x^2+2x+3)dx+∫1/(x^2+2x+3)dx
=∫1/(x^2+2x+3)d(x^2+2x+3)+∫1/[2+(x+1)^2]dx
=ln(x^2+2x+3)+∫1/[(√ 2)^2+(x+1)^2]dx
=ln(x^2+2x+3)+1/√ 2∫1/{1+[(x+1)/√ 2]^2}dx
=ln(x^2+2x+3)+1/√ 2*arctan(x+1)/√ 2+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询