高数题,求解题过程
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
由于:f(0+0)=f(0)*f(0)
得:f(0)=[f(0)]^2
得:f(0)=0,或f(0)=1
若f(0)=0,则对任何x,
有:f(x)=f(x+0)=f(x)*f(0)=0
因而对任何x:f'(x)=0
命题成立.
若f(0)=1,
则:[f(x+h)-f(x)]/h=[f(x)*f(h)-f(x)]/h
=f(x)*[f(h)-1]/h
=f(x)*[f(h)-f(0)]/h
当h趋于0时,上式取极限,即得:
f'(x)=f(x)f'(0)
得:f(0)=[f(0)]^2
得:f(0)=0,或f(0)=1
若f(0)=0,则对任何x,
有:f(x)=f(x+0)=f(x)*f(0)=0
因而对任何x:f'(x)=0
命题成立.
若f(0)=1,
则:[f(x+h)-f(x)]/h=[f(x)*f(h)-f(x)]/h
=f(x)*[f(h)-1]/h
=f(x)*[f(h)-f(0)]/h
当h趋于0时,上式取极限,即得:
f'(x)=f(x)f'(0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询