如何证明函数是连续的
1、证明一个分段函数是连续函数。
首先看各分段函数的函数式是不是连续(这就是一般的初等函数是否连续的做法)然后看分段函数的分段点,左右极限是否相等并等于函数值。
分段点处的左极限用左边的函数式做,分段点处的右极限用右边的函数式做。
2、多元函数在某点处的连续性证明
如果一个多元函数是连续的,那么一般的做法是这样:通过夹逼法,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等.而一般的。
这种题目往往是探求在(0,0)这一点的连续性,而又往往左边h(x)是0,右边g(x)也是趋于零的.而g(x)趋于零通常又是运用基本不等式对它进行放缩最后求得极限。
扩展资料
所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。
绝对值函数也是连续的。
定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。
非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。
另一个不连续函数的例子为符号函数。
参考资料来源:百度百科-连续