
展开全部
选 C
x = arctant, y = (12)ln(1+t^2)
dy/dx = y'<t>/x'<t> = t,
dx = dt/(1+t^2)
L = ∫<0, 1>√(1+t^2)dt/(1+t^2) = ∫<0, 1>dt/√(1+t^2) (令 t = tanu)
= ∫<0, π/4>secudu = [ln(secu+tanu)]<0, π/4> = ln(√2+1)
x = arctant, y = (12)ln(1+t^2)
dy/dx = y'<t>/x'<t> = t,
dx = dt/(1+t^2)
L = ∫<0, 1>√(1+t^2)dt/(1+t^2) = ∫<0, 1>dt/√(1+t^2) (令 t = tanu)
= ∫<0, π/4>secudu = [ln(secu+tanu)]<0, π/4> = ln(√2+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询